БЛОГ

Archive for the ‘genetics’ category: Page 142

Apr 24, 2022

Evidence suggests cancer is not as purely genetic as once thought

Posted by in categories: biotech/medical, genetics

New evidence shows that cancer is not as heritable or purely genetic as once thought, and taking a multi-omics approach may lead to a better understanding of how to prevent and treat it.

Apr 24, 2022

Here’s What the World Will Look Like in 2030 … Right?

Posted by in categories: genetics, space

These six visions from humans today span space colonies, a genetic panopticon, and straight-up apocalypse.

Apr 22, 2022

A new genome reference index could save the gene diversity of humans

Posted by in categories: biotech/medical, genetics

Apr 22, 2022

Largest study of whole genome sequencing data reveals ‘treasure trove’ of clues about causes of cancer

Posted by in categories: biotech/medical, genetics

DNA analysis of thousands of tumors from NHS patients has found a ‘treasure trove’ of clues about the causes of cancer, with genetic mutations providing a personal history of the damage and repair processes each patient has been through.

In the biggest study of its kind, a team of scientists led by Professor Serena Nik-Zainal from Cambridge University Hospitals (CUH) and University of Cambridge, analyzed the complete genetic make-up or whole-genome sequences of more than 12,000 NHS cancer patients.

Because of the vast amount of data provided by , the researchers were able to detect patterns in the DNA of cancer—or ‘mutational signatures’—that provide clues about whether a patient has had a past exposure to environmental causes of cancer such as smoking or UV light, or has internal, cellular malfunctions.

Apr 22, 2022

Lab grown, self-sustainable muscle cells repair injury and disease, mouse study shows

Posted by in categories: biotech/medical, genetics

In proof-of-concept experiments, Johns Hopkins Medicine scientists say they have successfully cultivated human muscle stem cells capable of renewing themselves and repairing muscle tissue damage in mice, potentially advancing efforts to treat muscle injuries and muscle-wasting disorders in people.

A report on the experiments was published April 7 in Cell Stem Cell.

To make the self-renewing stem cells, the scientists began with laboratory-grown human skin cells that were genetically reprogrammed to a more primitive state in which the cells have the potential to become almost any type of cell in the body. At this point, the cells are known as induced pluripotent stem (IPS) cells, and they are mixed with a solution of standard cell growth factors and nutrients that nudge them to differentiate into specific cell types.

Apr 22, 2022

Synthetic DNA Manufacturer has the “Write Stuff”

Posted by in categories: biotech/medical, chemistry, economics, genetics

Circa 2021 Synthetic silicon dna storage.


In research, the demand for DNA strands often outpaces supply. To help supply keep up, researchers may set aside traditional molecular cloning techniques and embrace polymerase chain reaction select PCR)-based techniques. Alternatively, researchers may perform gene synthesis, or the de novo chemical synthesis of DNA. Besides accelerating the creation of genetic sequences, gene synthesis avoids the need for template strands and simplifies procedures such as codon optimization and the fabrication of mutant sequences.

Although gene synthesis can be performed in house, many laboratories prefer to focus on their core competencies and outsource their gene synthesis projects to service providers, especially if sequences of over 1,000 base pairs are desired. Outsourcing also allows laboratories to take advantage of service providers’ economies of scale and quick turnaround times. Finally, service providers offer ease of use. Clients can go online, upload the desired sequences, choose the vector, get the price, and place the order. The entire process takes only a few minutes, and the genes can be delivered a few days later.

Continue reading “Synthetic DNA Manufacturer has the ‘Write Stuff’” »

Apr 20, 2022

New Insights Into the Origins of Pancreatic Endocrine Cells

Posted by in categories: biotech/medical, genetics

The pancreas is a key metabolic regulator. When pancreatic beta cells cease producing enough insulin, blood sugar levels rise dangerously — a phenomenon known as hyperglycemia — thus triggering diabetes. After discovering that other mature pancreatic cells can adapt and partly compensate for the lack of insulin, a team from the University of Geneva (UNIGE) demonstrates that the stem cells from which beta cells are derived are only present during embryonic development. This discovery puts an end to a long-standing controversy about the hypothetical existence of adult pancreatic stem cells that would give rise to newly differentiated hormone-producing cells after birth. The scientists also succeeded in precisely defining the ‘identity card’ of pancreatic endocrine cells, which is a promising tool for the production of replacement insulin-secreting cells. These results can be read in Cell Reports and Nature Communications.

Diabetes is a common metabolic disease. It is characterised by a persistent hyperglycemia that occurs when pancreatic cells responsible for the production of insulin — the beta cells — are destroyed or are no longer able to produce this regulatory hormone in sufficient quantities. Since 2010, studies performed by the team of Pedro Herrera, a professor in the Department of Genetic Medicine and Development and in the Diabetes Centre at the UNIGE Faculty of Medicine, as well as at the Geneva Institute of Genetics and Genomics (iGE3), reveal that the other pancreatic endocrine cells — namely alpha, delta and gamma cells, which produce other hormones useful for the metabolic balance — can “learn” to produce insulin when beta cells are absent or defective. This phenomenon, observed in mice and humans, demonstrates the plasticity of pancreatic cells and paves the way to new therapeutic strategies.

Apr 20, 2022

Discovery of bacteria linked to prostate cancer hailed as potential breakthrough

Posted by in categories: biotech/medical, genetics

And if bacteria causes one kind, whos to say it doesnt cause every other kind.


Genetic information on the microbes has already allowed the scientists to piece together how they may behave in the body, including what toxins and other substances they might release. This has led them to develop half a dozen hypotheses around how the bugs could cause prostate cancer.

“We currently have no way of reliably identifying aggressive prostate cancers, and this research could help make sure men get the right treatment for them,” Luxton added.

Continue reading “Discovery of bacteria linked to prostate cancer hailed as potential breakthrough” »

Apr 19, 2022

Over 5,500 New Viruses Identified in the Ocean — Including a Missing Link in Viral Evolution

Posted by in categories: biotech/medical, evolution, genetics

An analysis of the genetic material in the ocean has identified thousands of previously unknown RNA viruses and doubled the number of phyla, or biological groups, of viruses thought to exist, according to a new study our team of researchers has published in the journal Science.

RNA viruses are best known for the diseases they cause in people, ranging from the common cold to COVID-19. They also infect plants and animals important to people.

These viruses carry their genetic information in RNA, rather than DNA. RNA viruses evolve at much quicker rates than DNA viruses do. While scientists have cataloged hundreds of thousands of DNA viruses in their natural ecosystems, RNA viruses have been relatively unstudied.

Apr 19, 2022

DNA Mutation Research Reveals Why Most Smokers Never Get Lung Cancer

Posted by in categories: biotech/medical, genetics, health

Cigarette smoking is overwhelmingly the main cause of lung cancer, yet only a minority of smokers develop the disease. A study led by scientists at Albert Einstein College of Medicine and published online on April 11, 2022, in Nature Genetics suggests that some smokers may have robust mechanisms that protect them from lung cancer by limiting mutations. The findings could help identify those smokers who face an increased risk for the disease and therefore warrant especially close monitoring.

“This may prove to be an important step toward the prevention and early detection of lung cancer risk and away from the current herculean efforts needed to battle late-stage disease, where the majority of health expenditures and misery occur,” said Simon Spivack, M.D., M.P.H., a co-senior author of the study, professor of medicine, of epidemiology & population health, and of genetics at Einstein, and a pulmonologist at Montefiore Health System.