БЛОГ

Archive for the ‘neuroscience’ category: Page 328

Aug 11, 2016

Paralysed patients move limbs after virtual reality training

Posted by in categories: biotech/medical, cyborgs, neuroscience, robotics/AI, virtual reality

Eight completely paralysed people have regained function in their limbs following virtual reality training, in an accidental result that has astonished even the scientists involved.

Using a brain-machine interface, scientists showed that people with long-term severe paralysis could retrain the few remaining connections in their damaged spines, letting their brains talk to their extremities once more. This enabled them to feel sensation, move their limbs and improved their bladder and bowel control.

The results came about as a wholly unexpected side effect of training to help people use robotic exoskeletons, which let them walk upright.

Continue reading “Paralysed patients move limbs after virtual reality training” »

Aug 11, 2016

Why China is likely to spearhead the future of genetic enhancement

Posted by in categories: bioengineering, biotech/medical, ethics, genetics, neuroscience

G. Owen Schaefer, National University of Singapore

Would you want to alter your future children’s genes to make them smarter, stronger or better-looking? As the state of the science brings prospects like these closer to reality, an international debate has been raging over the ethics of enhancing human capacities with biotechnologies such as so-called smart pills, brain implants and gene editing. This discussion has only intensified in the past year with the advent of the CRISPR-cas9 gene editing tool, which raises the specter of tinkering with our DNA to improve traits like intelligence, athleticism and even moral reasoning.

Read more

Aug 11, 2016

How Hackers Could Get Inside Your Head With ‘Brain Malware’

Posted by in categories: cybercrime/malcode, neuroscience

Researchers at the University of Washington in Seattle say that we need to act fast to implement a privacy and security framework to prevent our brain signals from being used against us before the technology really takes off…


Brain-computer interfaces offer new applications for our brain signals—and a new vector for security and privacy violations.

Read more

Aug 11, 2016

Do thoughts come from your brain or a universal consciousness?

Posted by in category: neuroscience

Neuroscientist Andrew B. Newberg provides the answer.

Read more

Aug 10, 2016

Neuron unites 2 theoretical models on motion detection

Posted by in category: neuroscience

Computation of motion by T4 cells in the fly brain more complex than previously believed

Max-Planck-Gesellschaft.

Read more

Aug 10, 2016

Understanding brain circuit development: an interview with Dr Hollis Cline

Posted by in category: neuroscience

Interview conducted by , MA (Cantab)

Prior to your study, how much was known about the way brain circuits develop? How has your recent study advanced our understanding?

There’s a tremendous amount known about brain circuit development. Our work was inspired by experiments that were done over 50 years ago by scientists at Harvard University, Hubel and Wiesel. They received a Nobel Prize for their work and have inspired many additional experiments over the last 50 or 60 years.

Continue reading “Understanding brain circuit development: an interview with Dr Hollis Cline” »

Aug 8, 2016

China may be the future of genetic enhancement

Posted by in categories: bioengineering, biotech/medical, economics, genetics, neuroscience

Indeed, if we set ethical and safety objections aside, genetic enhancement has the potential to bring about significant national advantages. Even marginal increases in intelligence via gene editing could have significant effects on a nation’s economic growth. Certain genes could give some athletes an edge in intense international competitions. Other genes may have an effect on violent tendencies, suggesting genetic engineering could reduce crime rates.


We may soon be able to edit people’s DNA to cure diseases like cancer, but will this lead to designer babies? If so, bioethicist G Owen Schaefer argues that China will lead the way.

Read more

Aug 8, 2016

Ultrasonic wireless ‘neural dust’ sensors monitor nerves, muscles in real time

Posted by in categories: computing, neuroscience

Prototype wireless battery-less “neural dust” mote (3 x 1 x 1 millimeters) with electrodes attached to a nerve fiber in a rat. The mote contains a piezoelectric crystal (silver cube) that converts ultrasonic signals to electrical current, powering a simple electronic circuit containing a transistor (black square) that responds to the voltage generated by a nerve firing and triggers the piezoelectric crystal to create ultrasonic backscatter, which indicates detection of a neural signal. (photo credit: Ryan Neely/UC Berkeley)

University of California, Berkeley engineers have designed and built millimeter-scale device wireless, batteryless “neural dust” sensors and implanted them in muscles and peripheral nerves of rats to make in vivo electrophysiological recordings.

Continue reading “Ultrasonic wireless ‘neural dust’ sensors monitor nerves, muscles in real time” »

Aug 4, 2016

Hackers could get inside your brain, warns experts

Posted by in categories: cybercrime/malcode, neuroscience, quantum physics

I have reported on this threat for a very long time as we see more BMI technology advance. However, one are where things could drastically reduce hacking and breeches is the migration to a Quantum based net and infrastructure.


Cyberthieves might be mining personal information from your brainwaves at this very moment.

Continue reading “Hackers could get inside your brain, warns experts” »

Aug 4, 2016

New microfluidic chip replicates muscle-nerve connection

Posted by in categories: bioengineering, biotech/medical, computing, genetics, neuroscience

MIT engineers have developed a microfluidic device that replicates the neuromuscular junction—the vital connection where nerve meets muscle. The device, about the size of a U.S. quarter, contains a single muscle strip and a small set of motor neurons. Researchers can influence and observe the interactions between the two, within a realistic, three-dimensional matrix.

The researchers genetically modified the neurons in the device to respond to light. By shining light directly on the neurons, they can precisely stimulate these cells, which in turn send signals to excite the muscle fiber. The researchers also measured the force the muscle exerts within the device as it twitches or contracts in response.

The team’s results, published online today in Science Advances, may help scientists understand and identify drugs to treat amyotrophic lateral sclerosis (ALS), more commonly known as Lou Gehrig’s disease, as well as other neuromuscular-related conditions.

Continue reading “New microfluidic chip replicates muscle-nerve connection” »