БЛОГ

Nov 23, 2016

Qubits in brain can make it a quantum computer?

Posted by in categories: biological, computing, neuroscience, particle physics, quantum physics

The mere mention of “quantum consciousness” makes most physicists cringe, as the phrase seems to evoke the vague, insipid musings of a New Age guru. But if a new hypothesis proves to be correct, quantum effects might indeed play some role in human cognition. Matthew Fisher, a physicist at the University of California, Santa Barbara, raised eyebrows late last year when he published a paper in Annals of Physics proposing that the nuclear spins of phosphorus atoms could serve as rudimentary “qubits” in the brain — which would essentially enable the brain to function like a quantum computer.

Isher’s hypothesis faces the same daunting obstacle that has plagued microtubules: a phenomenon called quantum decoherence. To build an operating quantum computer, you need to connect qubits — quantum bits of information — in a process called entanglement. But entangled qubits exist in a fragile state. They must be carefully shielded from any noise in the surrounding environment. Just one photon bumping into your qubit would be enough to make the entire system “decohere,” destroying the entanglement and wiping out the quantum properties of the system. It’s challenging enough to do quantum processing in a carefully controlled laboratory environment, never mind the warm, wet, complicated mess that is human biology, where maintaining coherence for sufficiently long periods of time is well nigh impossible.

Over the past decade, however, growing evidence suggests that certain biological systems might employ quantum mechanics. In photosynthesis, for example, quantum effects help plants turn sunlight into fuel. Scientists have also proposed that migratory birds have a “quantum compass” enabling them to exploit Earth’s magnetic fields for navigation, or that the human sense of smell could be rooted in quantum mechanics.

Read more

Comments are closed.