Toggle light / dark theme

A study tracking 805 Brazilians in their 50s over an eight-year period has concluded that greater focus on hearing health may play a crucial role in preventing dementia. A major study from Brazil has found that people in their 50s with hearing loss face a greater risk of cognitive decline. The fi

The Gs/Gd lineage of highly pathogenic H5 avian influenza viruses—including H5N1—has rapidly evolved, spreading globally and infecting a growing range of birds, mammals, and occasionally humans. This review highlights the expanding risks, the challenges of cross-species transmission, and urgent needs for surveillance, vaccination, and a unified One Health response.

A new neuroimaging study from China has found that an eight-week course of bright light therapy helped reduce depressive symptoms in individuals with subthreshold depression. The treatment also altered dynamic functional connectivity in several brain regions associated with mood regulation. The study was published in the Journal of Affective Disorders.

Subthreshold depression refers to the presence of depressive symptoms that are clinically relevant but do not meet the full diagnostic criteria for major depressive disorder. Individuals with subthreshold depression may experience persistent sadness, fatigue, sleep disturbances, or concentration problems, but with fewer symptoms or a shorter duration than required for a formal diagnosis.

Despite being “subthreshold,” the condition can impair daily functioning and reduce quality of life. It is also linked to an increased risk of developing major depression in the future. Subthreshold depression is common—especially among adolescents, older adults, and individuals with chronic illnesses—and it often goes undiagnosed and untreated because the symptoms are perceived as mild or situational. However, research shows that even mild depressive symptoms can negatively affect social relationships, job performance, and physical health.

As researchers work to improve treatment of Alzheimer’s disease, new research by UCLA Health identified a candidate drug that reduces levels of a toxic form of a protein in the brain caused by the disease and improved memory in mice by boosting production of a protective protein.

In a study published in npj Drug Discovery, UCLA Health researchers targeted the protein clusterin (CLU), which is crucial in preventing the build-up of amyloid-beta plaques and tau proteins that disrupt communication between and lead to memory impairment—a hallmark symptom of Alzheimer’s disease.

More than a decade ago, a variant of the gene that encodes clusterin was identified as the third strongest genetic risk factor for late-onset Alzheimer’s disease. It was recently reported that increased CLU protein could provide protection against Alzheimer’s disease and .

Researchers have identified a type of chemical compound that, when applied to insecticide-treated bed nets, appears to kill the malaria-causing parasite in mosquitoes.

Published in the journal Nature, the multi-site collaborative study represents a breakthrough for a disease that continues to claim more than half a million lives worldwide every year. A lab at Oregon Health & Science University played a key role, and the National Institute of Allergy and Infectious Diseases, of the National Institutes of Health, supported the research.

Michael Riscoe, Ph.D., professor of molecular microbiology and immunology in the OHSU School of Medicine, designed and synthesized the anti-malarial drugs, termed ELQs, that were then screened in the lab of Flaminia Catteruccia, Ph.D., the study’s senior author and Irene Heinz Given Professor of Immunology and Infectious Diseases at the Harvard T.H. Chan School of Public Health.

Self-driving cars which eliminate traffic jams, getting a health care diagnosis instantly without leaving your home, or feeling the touch of loved ones based across the continent may sound like the stuff of science fiction.

But new research, led by the University of Bristol and published in the journal Nature Electronics, could make all this and more a step closer to reality thanks to a radical breakthrough in .

The futuristic concepts rely on the ability to communicate and transfer vast volumes of data much faster than existing networks. So physicists have developed an innovative way to accelerate this process between scores of users, potentially across the globe.

DNA is the genetic code that provides the biological instructions for every living species, but not every bit of DNA helps the species survive. Some pieces of DNA are more like parasites, along for the ride and their own survival.

To translate DNA into proteins, the building blocks of life, many of these selfish DNA elements have to be removed from the . Doing so enables the body to produce the wide diversity of proteins that allow for complex life, but the process can also lead to , like some kinds of cancer.

University of California, Santa Cruz researchers are studying the ways that these genetic elements hide and make copies of themselves, so they can propagate within a species’ DNA, or even hop from one species to an unrelated one in a process called horizontal gene transfer.

Kurzweil co-founded Beyond Imagination in 2018 with Harry Floor, a scientist and film producer, to develop autonomous A.I. systems capable of physical labor. The company is building humanoid robots aimed at addressing labor shortages in sectors such as health care and agriculture. Its advisory board includes motivational speaker Tony Robbins, former Qualcomm CEO Paul Jacobs, and former Paramount Pictures CEO James Gianopulos.

Between 2018 and 2019, the startup raised $4.2 million in seed funding and was most recently valued at $25 million, per Crunchbase. Reuters reported that its upcoming valuation could reach $500 million, with Gauntlet Ventures—a Dallas-based venture capital firm—expected to be the sole investor in the new round.

The indoor environment contains multiple sources of chemical compounds. These include continuous emissions from housing materials such as furniture, floors and furnishings, but also periodic intense emissions from human activities such as cooking, smoking, and cleaning.

Outdoor air chemicals can also enter indoor environments through infiltration and ventilation. Ozone (O3) from outdoors can react with compounds indoors to create a complex chemical cocktail within the indoor living space. Since people spend up to 90% of their time indoors, exposure to this diverse array of chemical compounds over extended periods is cause for concern, particularly as the human-health impacts of many such chemicals remain poorly understood.

On the basis of their findings in 2022, Jonathan Williams’s research group from the Max Planck Institute for Chemistry took a closer look at how the human oxidation field might be influenced by . The study is published in the journal Science Advances.