Toggle light / dark theme

Antennas receive and transmit electromagnetic waves, delivering information to our radios, televisions, cellphones and more. Researchers in the McKelvey School of Engineering at Washington University in St. Louis imagines a future where antennas reshape even more applications.

Their new metasurfaces, ultra-thin materials made of tiny nanoantennas that can both amplify and control light in very precise ways, could replace conventional refractive surfaces from eyeglasses to smartphone lenses and improve dynamic applications such as augmented reality/ and LiDAR ( and ranging).

While metasurfaces can manipulate light very precisely and efficiently, enabling powerful optical devices, they often suffer from a major limitation: Metasurfaces are highly sensitive to the , meaning they can only interact with light that is oriented and traveling in a certain direction. While this is useful in polarized sunglasses that block glare and in other communications and imaging technologies, requiring a specific polarization dramatically reduces the flexibility and applicability of metasurfaces.

Augmented reality (AR) has become a hot topic in the entertainment, fashion, and makeup industries. Though a few different technologies exist in these fields, dynamic facial projection mapping (DFPM) is among the most sophisticated and visually stunning ones. Briefly put, DFPM consists of projecting dynamic visuals onto a person’s face in real-time, using advanced facial tracking to ensure projections adapt seamlessly to movements and expressions.

While imagination should ideally be the only thing limiting what’s possible with DFPM in AR, this approach is held back by technical challenges. Projecting visuals onto a moving face implies that the DFPM system can detect the user’s facial features, such as the eyes, nose, and mouth, within less than a millisecond.

Even slight delays in processing or minuscule misalignments between the camera’s and projector’s image coordinates can result in projection errors—or “misalignment artifacts”—that viewers can notice, ruining the immersion.

Meta Platforms is assembling a specialized team within its Reality Labs division, led by Marc Whitten, to develop the AI, sensors, and software that could power the next wave of humanoid robots.

S platform capabilities. + s social media platforms. We believe expanding our portfolio to invest in this field will only accrue value to Meta AI and our mixed and augmented reality programs, Bosworth said. + How is Meta planning to advance its robotics work?

S CTO Andrew Bosworth. Bloomberg News reported the hiring first. + Meta has also appointed John Koryl as vice president of retail. Koryl, the former CEO of second-hand e-commerce platform The RealReal, will focus on boosting direct sales of Meta’s Quest mixed reality headsets and AI wearables, including Ray-Ban Meta smart glasses, developed in partnership with EssilorLuxottica.

S initial play is to become the backbone of the industry similar to what Google The company has already started talks with robotics firms like Unitree Robotics and Figure AI. With plans to hire 100 engineers this year and billions committed to AI and AR/VR, Meta is placing a major bet on humanoid robots as the next leap in smart home technology.


In today’s AI news, OpenAI will ship GPT-5 in a matter of months and streamline its AI models into more unified products, said CEO Sam Altman in an update. Specifically, Altman says the company plans to launch GPT-4.5 as its last non-chain-of-thought model and integrate its latest o3 reasoning model into GPT-5.

In other advancements, Harvey, a San Francisco AI startup focused on the legal industry, has raised $300 million in a funding round led by Sequoia that values the startup at $3 billion — double the amount investors valued it at in July. The Series D funding round builds on the momentum and reflects investors’ enthusiasm for AI tools …

Meanwhile, Meta is in talks to acquire South Korean AI chip startup FuriosaAI, according to people familiar with the matter, a deal that could boost the social media giant’s custom chip efforts amid a shortage of Nvidia chips and a growing demand for alternatives. The deal could be completed as early as this month.

Then, AI took another step into Hollywood today with the launch of a new filmmaking tool from showbiz startup Flawless. The product — named DeepEditor — promises cinematic wizardry for the digital age. For movie makers, the tool offers photorealistic edits without a costly return to set.

In videos, join IBM’s Boris Sobolev as he explains how model customization can enhance reliability and decision-making of agentic systems. Discover practical tips for data collection, tool use, and pushing the boundaries of what your AI can achieve. Supercharge your AI agents for peak performance!

Researchers at the University of Liège (Belgium) have uncovered a previously unknown mechanism that regulates the immune response against parasites. During a parasitic infection, specific immune cells, known as virtual memory T cells, become activated and express a surface molecule called CD22, which prevents an excessive immune reaction. This discovery could help in better-controlling inflammation and improving immune responses to infections.

The findings are published in the journal Science Immunology.

Nearly a quarter of the world’s population is infected by helminths, that establish themselves in the intestine for extended periods. In response to these invaders, the immune system deploys complex defense strategies. In their recent study, the researchers revealed a previously unsuspected mechanism that regulates the activation of certain : CD8+ virtual memory T cells (TVM).

A research team at POSTECH has developed a novel multidimensional sampling theory to overcome the limitations of flat optics. Their study not only identifies the constraints of conventional sampling theories in metasurface design but also presents an innovative anti-aliasing strategy that significantly enhances optical performance. Their findings were published in Nature Communications.

Flat optics is a cutting-edge technology that manipulates light at the nanoscale by patterning ultra-thin surfaces with nanostructures. Unlike traditional optical systems that rely on bulky lenses and mirrors, enables ultra-compact, high-performance optical devices. This innovation is particularly crucial in miniaturizing smartphone cameras (reducing the “camera bump”) and advancing AR/VR technologies.

Metasurfaces, one of the most promising applications of flat optics, rely on hundreds of millions of nanostructures to precisely sample and control the phase distribution of light. Sampling, in this context, refers to the process of converting analog optical signals into discrete data points—similar to how the human brain processes visual information by rapidly capturing multiple images per second to create continuous motion perception.

Join me as I explore the most incredible innovations at CES 2025! As a Las Vegas local and tech enthusiast, I’ve found the coolest, most unexpected tech that’s shaping our future. From AI companions to flying cars, this year’s show was packed with amazing discoveries.

🎯 Featured in this video:
NVIDIA’s Groundbreaking AI Keynote.
Rokid AR Glasses with Real-Time Translation.
Holobox Mini Holographic Display.
Toshiba REGZA AI TV
Ropet AI Companion.
Code 27 Digital Character Display.
Sirius Dog.
Unitree Robotics.
Aotos Rideable Suitcase.
InMotion Electric Unicycle.
Xpeng Flying Car.
Waymo Zeekr RT Autonomous Vehicle.
🔥 Highlights:
Cutting-edge AI demonstrations.
Real-time language translation.
Next-gen holographic displays.
Advanced robotics.
Interactive AI companions.
Revolutionary personal transportation.
Smart home innovations.
And much more!

👋 Connect with me:
Instagram: @VegasNavigator.
Website: VegasNavigator.com.

#CES2025 #Technology #LasVegas #TechReview #Innovation #AI #FutureTech #VegasNavigator

NVIDIA has filed a patent for augmented reality (AR) glasses. These glasses may look like regular glasses but with some special features on the inside. It also appears that the company is looking to make these glasses lightweight and energy-efficient while offering high-quality visuals.

The patent titled “Backlight-Free Augmented Reality Digital Holography” can be found under the number 20250004275A1 on the United States Patent and Trademark Office (USPTO) website. Thanks to SETI Park, an independent patent researcher, for sharing its details on X.