Toggle light / dark theme

Bridging light, microwaves and electrons for precision calibration

EPFL researchers have developed a method to calibrate electron spectrometers with extreme accuracy by linking microwave, optical, and free-electron frequencies.

Frequency is one of the most precisely measurable quantities in science. Thanks to , tools that generate a series of equally spaced, precise frequencies like the teeth of a ruler, researchers can connect frequencies across the electromagnetic spectrum, from microwaves to optical light, enabling breakthroughs in timekeeping, spectroscopy, and navigation.

Electron energy-loss spectroscopy (EELS) is a powerful tool used to investigate the structure and properties of materials at the atomic level. It works by measuring how electrons lose energy as they pass through a sample. But although EELS provides excellent spatial resolution, its spectral resolution, the ability to measure energy precisely, has lagged behind optical methods.

This Wonder Material Could Revolutionize Renewable Energy

A team of researchers has explored how two-dimensional materials known as MXenes could revolutionize renewable energy and sustainable chemical production. Scientists searching for cleaner and more sustainable technologies are turning their attention to two-dimensional materials that could transfo

More friends, more division: Study finds growing social circles may fuel polarization

Between 2008 and 2010, polarization in society increased dramatically alongside a significant shift in social behavior: the number of close social contacts rose from an average of two to four or five people. The connection between these two developments could provide a fundamental explanation for why societies around the world are increasingly fragmenting into ideological bubbles.

“The big question that not only we, but many countries are currently grappling with, is why polarization has increased so dramatically in recent years,” says Stefan Thurner from the Complexity Science Hub (CSH), explaining the study’s motivation. The research was published in Proceedings of the National Academy of Sciences.

The researchers’ findings confirm that increasing polarization is not merely perceived—it is measurable and objectively occurring. “And this increase happened suddenly, between 2008 and 2010,” says Thurner. The question remained: what caused it?

Imaging technique maps fleeting intermediates in hydrogen electrocatalysis

Electrocatalytic transformations not only require electrical energy—they also need a reliable middleman to spark the desired chemical reaction. Surface metal-hydrogen intermediates can effectively produce value-added chemicals and energy conversion, but, given their low concentration and fleeting lifespan, they are difficult to characterize or study in depth, especially at the nanoscale.

Bubble wrap bursts enable power-free acoustic testing

Non-destructive testing allows engineers to evaluate the integrity of structures such as pipelines, tanks, bridges, and machinery without dismantling them. Conventional approaches rely on loudspeakers, lasers, or electric sparks. While effective, these systems can be difficult or dangerous to use in flammable or confined areas and require considerable power to function effectively.

Now, a new study from Japan, available online in Measurement, shows how a common packaging material can replace power-hungry devices in non-destructive testing. The team, led by Professor Naoki Hosoya, along with Shuichi Yahagi from Tokyo City University, Toshiki Shimizu and Seiya Inadera from the Shibaura Institute of Technology, and Itsuro Kajiwara of Hokkaido University, found a simple way to test pipes for hidden flaws by using bubble wrap.

The researchers discovered that the sharp crack of a bubble burst can be a viable substitute for the expensive, energy-dependent tools usually employed in non-destructive testing. The researchers claim the method can detect objects inside a pipe within a 2% error margin, without requiring electricity or heavy equipment.

All-solid-state battery researchers reveal key insights into degradation mechanisms

Researchers from UNIST, Seoul National University (SNU), and POSTECH have made a significant breakthrough in understanding the degradation mechanisms of all-solid-state batteries (ASSBs), a promising technology for next-generation electric vehicles and large-scale energy storage.

Jointly led by Professor Donghyuk Kim at UNIST’s School of Energy and Chemical Engineering, Professor Sung-Kyun Jung at SNU’s School of Transdisciplinary Innovations, and Professor Jihyun Hong from POSTECH, their study reveals that interfacial chemical reactions play a critical role in structural damage and performance decline in sulfide-based ASSBs. The findings are published in Nature Communications.

Unlike that rely on flammable liquid electrolytes, ASSBs use non-flammable solid electrolytes, offering enhanced safety and higher energy density. However, challenges such as interface instability and microstructural deterioration have impeded their commercialization. Until now, the detailed understanding of how these phenomena occur has remained limited.

Topological insulator maintains quantum spin Hall effect at higher temperatures

Topological insulators could form the basis for revolutionary electronic components. However, as they generally only function at very low temperatures, their practical application has been severely limited to date. Researchers at the University of Würzburg have now developed a topological insulator that also works at higher temperatures. Their results are published in Science Advances.

A topological insulator can be imagined as a material that is a perfect insulator on the inside—it does not conduct electricity there. At its edges, however, it behaves like an almost lossless “electron highway.” Electrons can move along these paths with almost no loss.

To deepen the analogy: these highways have separate lanes for electrons with different “spins”—a kind of intrinsic angular momentum. Electrons with “spin-up” move in one direction, electrons with “spin-down” in the opposite direction. This strict traffic regulation prevents collisions and thus . The phenomenon behind this is known as the quantum spin Hall effect (QSHE)—an effect that was also first experimentally proven at the University of Würzburg.

The Holy Grail of Physics: Scientists Discover New Path to Room-Temperature Superconductors

Penn State scientists have unveiled a new theory-driven method to predict superconductors, offering a possible path toward materials that could conduct electricity perfectly. Electricity travels through wires to deliver power, but some of that energy is always lost along the way. However, that en

Nanoporous silicon generates electricity from friction with water

A European research team involving Hamburg University of Technology (TUHH) and Deutsches Elektronen-Synchrotron DESY has developed a novel way for converting mechanical energy into electricity—by using water confined in nanometer-sized pores of silicon as the active working fluid.

In a study published in Nano Energy, scientists from CIC energiGUNE (Spain), the University of Ferrara (Italy), the Hamburg University of Technology (TUHH) and DESY (Germany), the University of Silesia in Katowice (Poland), and Riga Technical University (Latvia), demonstrate that the cyclic intrusion and extrusion of water in water-repellent nanoporous silicon monoliths can produce measurable electrical power.

Power Posing: Fake It Until You Make It

Not many people realise how much posture impacts the body and mind. The way you hold yourself for 90–99% of the day has a powerful effect on your hormones and mood. Hunching over can lower testosterone and raise cortisol, while standing tall with your spine straight and shoulders back helps increase testosterone and reduce cortisol. You’ll also notice that when you’re upright, your breathing becomes deeper and easier, supporting relaxation and reducing stress. Slouching restricts breathing, leading to shallow breaths, lower oxygen levels, and negative effects on both energy and mood.

Slouching lowers testosterone:

Adjusting posture has the opposite effect: https://somaticmovementcenter.com/10-shocking-ways-posture-a…%20muscles, I%20gotten%20your%20attention%20yet?


Nervous about an upcoming presentation or job interview? Holding one’s body in “high-power” poses for short time periods can summon an extra surge of power and sense of well-being when it’s needed, according to Harvard Business School professor Amy J.C. Cuddy.

/* */