Toggle light / dark theme

Redesigned electrolyte helps lithium-metal batteries safely reach full charge in 15 minutes

Lithium-metal batteries (LMBs) are rechargeable batteries that contain an anode (i.e., the electrode through which current flows and a loss of electrons occurs) made of lithium metal. Compared to conventional lithium-ion batteries (LIBs), which power most electronic devices on the market today, LMBs could store more energy, charge faster and operate in extreme environments.

Despite their advantages, these batteries have not yet achieved their full potential and recharging them safely in short periods of time has proved challenging. In particular, enabling the fast and efficient movement of electrons and ions across the boundary between electrodes and the electrolyte, a process known as charge transfer, has proved difficult.

If charge transfer is slow, chemical reactions become sluggish, which can also lead to undesirable side reactions and prompt the formation of Li dendrites. These are essentially needle-like extensions that can adversely impact a battery’s performance, lead to its sudden failure and, in most extreme cases, result in fires or explosions.

Lithium alternatives? Calcium-ion batteries show strong 1,000-cycle performance in new test

Researchers at The Hong Kong University of Science and Technology (HKUST) have achieved a breakthrough in calcium-ion battery (CIB) technology, which could transform energy storage solutions in everyday life. Utilizing quasi-solid-state electrolytes (QSSEs), these innovative CIBs promise to enhance the efficiency and sustainability of energy storage, impacting a wide range of applications from renewable energy systems to electric vehicles.

The findings, titled “High-Performance Quasi-Solid-State Calcium-Ion Batteries from Redox-Active Covalent Organic Framework Electrolytes,” are published in the journal Advanced Science.

The urgency for sustainable energy storage solutions is growing critical worldwide. As the world accelerates its shift to green energy, the demand for efficient and stable battery systems has never been more pressing. Today’s mainstream lithium-ion batteries (LIBs) face challenges due to resource scarcity and near-limited energy density, making the exploration of alternatives like CIBs essential for a sustainable future.

Water-based electrolyte helps create safer and long-lasting Zn-Mn batteries

Many countries worldwide are increasingly investing in new infrastructure that enables the production of electricity from renewable energy sources, particularly wind and sunlight. To make the best of these energy solutions, one should also be able to reliably store the excess energy created during periods of intense sunlight or wind, so that it can be used later in times of need.

One promising type of battery for this purpose is based on zinc-manganese (Zn-Mn) and utilizes aqueous (i.e., water-based) electrodes instead of flammable organic electrolytes. These batteries rely on processes known as electrodeposition and dissolution, via which solid materials form and dissolve on electrodes as the battery is charging and discharging.

In Zn-Mn batteries, Zn serves as the anode (i.e., the electrode that releases electrons) and manganese dioxide (MnO₂) the cathode (i.e., the electrode from which electrons are gained). A key chemical reaction prompting their functioning, known as the MnO₂/Mn²⁺ conversion reaction, typically can only occur in acidic conditions.

Electronic friction can be tuned and switched off

Researchers in China have isolated the effects of electronic friction, showing for the first time how the subtle drag force it imparts at sliding interfaces can be controlled. They demonstrate that it can be tuned by applying a voltage, or switched off entirely simply by applying mechanical pressure. The results, published in Physical Review X, could inform new designs that allow engineers to fine-tune the drag forces materials experience as they slide over each other.

In engineering, friction causes materials to wear and degrade over time, and also causes useful energy to be wasted as heat. While this problem can be mitigated through lubricants and smoother surfaces, friction can also arise from deeper, more subtle effects.

Among these is an effect which can occur at metallic or chemically active surfaces as they slide past one another. In these cases, atomic nuclei in one surface can transfer some of their energy to electrons in the other surface, exciting them to higher energy levels. This lost energy produces a drag force that increases with sliding velocity: an effect known as “electronic friction.”

These Molecular Filters Thousands of Times Thinner Than a Human Hair Could Change How the World Cleans Water

Industrial separations sit quietly at the heart of modern manufacturing, yet they consume enormous amounts of energy and generate significant environmental costs. A new membrane technology developed by an international research team promises a more precise and sustainable alternative. Scientists

Magnetic Covalent Organic Frameworks (MCOFs): A Sustainable Solution for Emerging Organic Contaminants (EOCs) from the River

Phthalates (PAEs) and bisphenol A (BPA) are significant components in plastic and its derivative industries. They are omnipresent in water sources owing to intensive industrialization and rapid urbanization, hence posing adverse effects on humans and significant environmental issues. Researchers have developed a new magnetic material, called magnetic covalent organic frameworks (MCOFs), that can effectively remove harmful chemicals like PAEs and BPA from water. Made using a special method that prevents clumping, these materials are highly porous, magnetic and reusable up to 15 times. They showed excellent removal efficiency, even at very low pollutant levels found in real river water. The study also revealed that the removal process involves strong chemical bonding. This breakthrough offers a promising, eco-friendly solution for cleaning water contaminated by plastics and industrial waste.

Read the article in Royal Society Open Science.


Abstract. The synthesis and characterization of effective magnetic covalent organic frameworks (MCOFs) are presented for the highly efficient adsorption of dimethyl phthalate (DMP), dibutyl phthalate (DBP) and bisphenol A (BPA) from the aqueous environment. The novelty of this research lies in the development of MCOFs through a coprecipitation method that incorporates an innovative silica inner shell. This crucial feature not only prevents aggregation of the magnetic core, which is a significant limitation of conventional adsorbents, but also enables robust interactions between the core and the outer covalent organic framework (COF). The synthesized MCOFs were comprehensively characterised using a variety of techniques. Fourier-transform infrared spectroscopy (FTIR) and vibrating sample magnetometry (VSM) analyses confirmed successful synthesis and strong magnetic properties, while field-emission scanning electron microscopy (FESEM) revealed the presence of spherical, porous structures with small granules. Energy-dispursive X-ray (EDX) spectrometry analysis further confirmed the successful synthesis, showing a material composition of 58.2% Fe, 33.4% O, 4.8% C, and 3.2% Si. Brunauer–Emmett–Teller (BET) analysis showed the MCOFs possess a high surface area of 128.1 m2 g–1 and a pore diameter of 16.8 nm, indicating abundant active sites for adsorption. Under optimal conditions (pH 7,100 mg adsorbent dosage, and 25-minute contact time) the MCOFs exhibited exceptional adsorption performance, with removal efficiencies of 90.0% for DMP, 86.0% for DBP, and 92.0% for BPA. The kinetic study revealed that the adsorption mechanism follows the pseudo-second-order model, suggesting a significant chemisorption process. Crucially, in situ FTIR analysis provided spectroscopic validation that hydrogen bonding and π–π stacking are the predominant interactions between the MCOFs and the organic contaminants. The developed analytical method achieved low detection limits of 0.0058 mg l−1 for DMP, 0.0079 mg l−1 for DBP and 0.0063 mg l−1 for BPA, indicating high sensitivity for trace-level contaminant detection in real water samples. Furthermore, the adsorbent demonstrated exceptional reusability, maintaining high performance after 15 adsorption–desorption cycles, which is a significant improvement over conventional adsorbents. This study demonstrates that MCOFs with a silica inner shell are a highly promising, stable and sustainable solution for the removal of emerging organic contaminants (EOCs).

A forgotten battery design from Thomas Edison—how scientists helped reimagine it

A little-known fact: In the year 1900, electric cars outnumbered gas-powered ones on the American road. The lead-acid auto battery of the time, courtesy of Thomas Edison, was expensive and had a range of only about 30 miles. Seeking to improve on this, Edison believed the nickel-iron battery was the future, with the promise of a 100-mile range, a long life and a recharge time of seven hours, fast for that era.

Alas, that promise never reached fruition. Early electric car batteries still suffered from serious limitations, and advances in the internal combustion engine won the day.

Now, an international research collaboration co-led by UCLA has taken a page from Edison’s book, developing nickel-iron battery technology that may be well-suited for storing energy generated at solar farms. The prototype was able to recharge in only seconds, instead of hours, and achieved over 12,000 cycles of draining and recharging—the equivalent of more than 30 years of daily recharges.

When water meets rock: Exploring water quality impacts from legacy lithium mining in North Carolina

Starting just outside Charlotte, North Carolina, a vast underground deposit of lithium stretches south for 25 miles. A key component of rechargeable batteries and energy grid storage systems, the soft, silvery metal is a global commodity, making this subterranean cache a geopolitically important and potentially lucrative resource.

Here, lithium primarily occurs within granite-like rocks called pegmatite, bound to a green-tinged mineral called spodumene. Two large lithium mines once operated in this region—called the Carolina Tin-Spodumene Belt—but closed decades ago. As demand for renewable energy climbs, mining companies have growing interest in the area.

The presence of historic, or legacy, lithium mines and the prospect of new lithium mining activity have led nearby residents to wonder about the possibility of drinking water contamination. Over the past several years, a team led by Avner Vengosh, Distinguished Professor and Nicholas Chair of Environmental Quality at Duke University’s Nicholas School of the Environment, has been working to address those concerns.

Stable high-energy pulses achieved with low-stress electro-optic switch

A research team led by Prof. Zhang Tianshu from the Hefei Institutes of Physical Science of the Chinese Academy of Sciences has developed a low-stress electro-optic switch based on large-aperture β-barium borate (BBO) slab crystals and integrated it into an Nd:YAG hybrid-cavity Innoslab laser system. Their study, published in Optics Express on January 13, addresses long-standing challenges in high-energy laser systems, particularly those related to switching modulation consistency and operational stability.

/* */