БЛОГ

Archive for the ‘computing’ category

Nov 10, 2020

Computer Scientists Achieve ‘Crown Jewel’ of Cryptography

Posted by in categories: computing, encryption

A cryptographic master tool called indistinguishability obfuscation has for years seemed too good to be true. Three researchers have figured out that it can work.

Nov 10, 2020

Making 3D nanosuperconductors with DNA

Posted by in categories: biotech/medical, chemistry, computing, engineering, nanotechnology, quantum physics

Three-dimensional (3D) nanostructured materials—those with complex shapes at a size scale of billionths of a meter—that can conduct electricity without resistance could be used in a range of quantum devices. For example, such 3D superconducting nanostructures could find application in signal amplifiers to enhance the speed and accuracy of quantum computers and ultrasensitive magnetic field sensors for medical imaging and subsurface geology mapping. However, traditional fabrication tools such as lithography have been limited to 1-D and 2-D nanostructures like superconducting wires and thin films.

Now, scientists from the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory, Columbia University, and Bar-Ilan University in Israel have developed a platform for making 3D superconducting nano-architectures with a prescribed organization. As reported in the Nov. 10 issue of Nature Communications, this platform is based on the self-assembly of DNA into desired 3D shapes at the nanoscale. In DNA self-assembly, a single long strand of DNA is folded by shorter complementary “staple” strands at specific locations—similar to origami, the Japanese art of paper folding.

“Because of its structural programmability, DNA can provide an assembly platform for building designed nanostructures,” said co-corresponding author Oleg Gang, leader of the Soft and Bio Nanomaterials Group at Brookhaven Lab’s Center for Functional Nanomaterials (CFN) and a professor of chemical engineering and of applied physics and at Columbia Engineering. “However, the fragility of DNA makes it seem unsuitable for functional device fabrication and nanomanufacturing that requires inorganic materials. In this study, we showed how DNA can serve as a scaffold for building 3D nanoscale architectures that can be fully “converted” into inorganic materials like superconductors.”

Nov 10, 2020

RansomEXX trojan variant is being deployed against Linux systems, warns Kaspersky

Posted by in category: computing

Inoculation is simple: MFA, regular timely patching.

Nov 10, 2020

Tiny device enables new record in super-fast quantum light detection

Posted by in categories: computing, engineering, quantum physics

Bristol researchers have developed a tiny device that paves the way for higher performance quantum computers and quantum communications, making them significantly faster than the current state-of-the-art.

Researchers from the University of Bristol’s Quantum Engineering Technology Labs (QET Labs) and Université Côte d’Azur have made a new miniaturized detector to measure quantum features of light in more detail than ever before. The device, made from two working together, was used to measure the of “squeezed” quantum light at record high speeds.

Harnessing unique properties of quantum physics promises novel routes to outperform the current state-of-the-art in computing, communication and measurement. Silicon photonics—where light is used as the carrier of information in silicon micro-chips—is an exciting avenue towards these next-generation technologies.

Nov 9, 2020

Are Teleporting Qutrits the Future of Computing?

Posted by in categories: computing, mobile phones, particle physics, quantum physics, transportation

Scientists have successfully teleported a three-dimensional quantum state. The international effort between Chinese and Austrian scientists could be crucial for the future of quantum computers.

The researchers, from Austrian Academy of Sciences, the University of Vienna, and University of Science and Technology of China, were able to teleport the quantum state of one photon to another distant state. The three-dimensional transportation is a huge leap forward. Previously, only two-dimensional quantum teleportation of qubits has been possible. By entering a third dimension, the scientists were able to transport a more advanced unit of quantum information known as a “qutrit.”

Continue reading “Are Teleporting Qutrits the Future of Computing?” »

Nov 9, 2020

CERN is offering a free quantum computing course online

Posted by in categories: computing, quantum physics

Developers who want to understand the complicated new field of computing can tune in for free weekly lectures.

Nov 8, 2020

To Understand Gravity, Toss a Hard Drive into a Black Hole

Posted by in categories: computing, cosmology, particle physics, quantum physics

We probably think we know gravity pretty well. After all, we have more conscious experience with this fundamental force than with any of the others (electromagnetism and the weak and strong nuclear forces). But even though physicists have been studying gravity for hundreds of years, it remains a source of mystery.

In our video Why Is Gravity Different? We explore why this force is so perplexing and why it remains difficult to understand how Einstein’s general theory of relativity (which covers gravity) fits together with quantum mechanics.

Continue reading “To Understand Gravity, Toss a Hard Drive into a Black Hole” »

Nov 7, 2020

Raspberry Pi 400 is out: $70 for a complete PC with a faster Pi 4 in a keyboard

Posted by in category: computing

The Raspberry Pi 400 comes with 4GB RAM, a faster Raspberry Pi 4 and a built-in heatsink to keep it cool.

Nov 7, 2020

Researchers develop a high-power, portable terahertz laser

Posted by in categories: biotech/medical, computing, quantum physics, terrorism

Researchers at MIT and the University of Waterloo have developed a high-power, portable version of a device called a quantum cascade laser, which can generate terahertz radiation outside of a laboratory setting. The laser could potentially be used in applications such as pinpointing skin cancer and detecting hidden explosives.

Until now, generation of powerful enough to perform real-time imaging and fast spectral measurements required temperatures far below 200 Kelvin (−100 degrees Fahrenheit) or lower. These temperatures could only be achieved with bulky equipment that limited the technology’s use to a laboratory setting. In a paper published in Nature Photonics, MIT Distinguished Professor of Electrical Engineering and Computer Sciences Qing Hu and his colleagues report that their terahertz can function at temperatures of up to 250 K (−10 degrees Fahrenheit), meaning that only a compact portable cooler is required.

Terahertz quantum cascade lasers, tiny chip-embedded semiconductor laser devices, were first invented in 2002, but adapting them to operate far above 200 K proved to be so difficult that many people in the field speculated that there was a fundamental physical reason preventing it, Hu says.

Nov 6, 2020

Applying particle physics methods to quantum computing

Posted by in categories: computing, information science, particle physics, quantum physics, space

Borrowing a page from high-energy physics and astronomy textbooks, a team of physicists and computer scientists at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) has successfully adapted and applied a common error-reduction technique to the field of quantum computing.

In the world of subatomic particles and giant particle detectors, and distant galaxies and giant telescopes, scientists have learned to live, and to work, with uncertainty. They are often trying to tease out ultra-rare particle interactions from a massive tangle of other particle interactions and background “noise” that can complicate their hunt, or trying to filter out the effects of atmospheric distortions and interstellar dust to improve the resolution of astronomical imaging.

Also, inherent problems with detectors, such as with their ability to record all particle interactions or to exactly measure particles’ energies, can result in data getting misread by the electronics they are connected to, so scientists need to design complex filters, in the form of computer algorithms, to reduce the margin of error and return the most accurate results.

Page 1 of 35912345678Last