Toggle light / dark theme

Forget numbers—your PIN could consist of a shimmy and a shake

In the near future, you may not need to touch a keypad to select a tip or pay for large purchases. All it may take is a swipe, tap or other quick gesture.

The innovation utilizes near-field communication (NFC), the short-range wireless technology embedded in smartphones, and terminals, passports and key fobs. UBC computer scientists say it could help prevent the spread of germs through touchpads, speed up transactions, and improve accessibility for users unable to press buttons.

Researchers debuted the technology in a paper at the User Interface Software and Technology conference.

Improved models of heavy ion collisions reveal new details of early universe nuclear matter

A researcher, Heikki Mäntysaari from the University of Jyväskylä (Finland), has been part of an international research group that has made significant advances in modeling heavy ion collisions. New computer models provide additional information about the matter in the early universe and improve our understanding of the extremely hot and dense nuclear matter. The work is published in the journal Physical Review Letters.

Quantum error correction codes enable efficient scaling to hundreds of thousands of qubits

A new class of highly efficient and scalable quantum low-density parity-check error correction codes, capable of performance approaching the theoretical hashing bound, has been developed by scientists at the Institute of Science, Tokyo, Japan. These novel error correction codes can handle quantum codes with hundreds of thousands of qubits, potentially enabling large-scale fault-tolerant quantum computing, with applications in diverse fields, including quantum chemistry and optimization problems.

‘A real physical thing’: Quantum computer exhibit at O’Hare seeks to make the technology tangible

Chicago has quickly emerged as a hub for quantum computing, with the state of Illinois and technology companies pouring millions of dollars into developing a campus to build the world’s first commercially viable quantum computer on the city’s Southeast Side.

But what does a quantum computer even look like? And how do they work?

Those are questions that a new exhibit unveiled at Chicago’s O’Hare International Airport seeks to answer. In Terminal 1, near the massive model of a dinosaur skeleton, travelers of all ages paused on their brisk walks through the concourse to look at the model of the inside of a quantum computer, which resembles a large golden chandelier with four “tiers,” copper wiring and a chip at the bottom. On a screen on one side of the fiberglass case protecting the quantum computer, travelers were able to watch a video explaining the science behind it.

“Like Talking on the Telephone” — Quantum Breakthrough Lets Individual Atoms Chat Like Never Before

Scientists have linked nuclear spins inside silicon chips, marking a leap toward scalable quantum computers. Engineers at UNSW have achieved a major breakthrough in quantum computing by creating what are known as “quantum entangled states.” In this phenomenon, two particles become so strongly conne

New digital cognitive test for diagnosing Alzheimer’s disease

“The unique aspect of our BioCog test is that unlike other digital tests, it has been evaluated in a primary care population, i.e. patients seeking treatment at a health centre because they are experiencing cognitive problems, such as memory problems. Combining the results of the digital test and the blood test increases the accuracy of diagnosing Alzheimer’s disease. The purpose of the test is to make things easier for primary care doctors,” says one of the authors.

The digital test is done by the patient individually on a tablet computer. The test measures:


Alzheimer’s disease is the most common cause of dementia. As new disease-modifying treatments for Alzheimer’s disease are now becoming available, both early and accurate diagnosis in a resource-efficient assessment process are becoming increasingly important, as not everyone responds to the new drugs. Seeking medical care for cognitive impairment is not necessarily the result of Alzheimer’s disease – it can for example be caused by depression, fatigue or other dementias.

“Primary care does not have the resources, time or specialist knowledge to investigate possible Alzheimer’s disease in the same way as specialised memory clinics. And this is where a digital cognitive test can make the biggest difference,” says the senior author.

Unlike pen-and-paper tests, which are generally used to assess cognitive impairment, digital tests provide a more detailed picture. More aspects and new variables that could not previously be measured as easily are included.

Physicists demonstrate 3,000 quantum-bit system capable of continuous operation

One often-repeated example illustrates the mind-boggling potential of quantum computing: A machine with 300 quantum bits could simultaneously store more information than the number of particles in the known universe.

Now process this: Harvard scientists just unveiled a system that was 10 times bigger and the first quantum machine able to operate continuously without restarting.

In a paper published in the journal Nature, the team demonstrated a system of more than 3,000 (or qubits) that could run for more than two hours, surmounting a series of technical challenges and representing a significant step toward building the super computers, which could revolutionize science, medicine, finance, and other fields.

In a first, scientists observe short-range order in semiconductors

Inside the microchips powering your devices, atoms aren’t just randomly scattered. They follow a hidden order that can change how semiconductors behave.

A team of researchers from the Lawrence Berkeley National Laboratory (Berkeley Lab) and George Washington University has, for the first time, observed these tiny patterns, called short-range order (SRO), directly in semiconductors.

This discovery is a game-changer, as understanding how atoms naturally arrange themselves could let researchers design materials with desirable electronic properties. Such control could revolutionize quantum computing, neuromorphic devices that mimic the brain, and advanced optical detectors.

/* */