Toggle light / dark theme

A twist in spintronics: Chiral magnetic nanohelices control spins at room temperature

Spintronics, or spin-electronics, is a revolutionary approach to information processing that utilizes the intrinsic angular momentum (spin) of electrons, rather than solely relying on electric charge flow. This technology promises faster, more energy-efficient data storage and logic devices. A central challenge in fully realizing spintronics has been the development of materials that can precisely control electron spin direction.

In a new development for spin-nanotechnology, researchers led by Professor Young Keun Kim of Korea University and Professor Ki Tae Nam of Seoul National University have successfully created magnetic nanohelices that can control electron spin.

This technology, which utilizes chiral magnetic materials to regulate electron spin at room temperature, has been published in Science.

UCLA Engineers Build Room-Temperature Quantum-Inspired Computer

Experimental device harnesses quantum properties for efficient processing at room temperature. Engineers are working to design computers capable of handling a difficult class of tasks known as combinatorial optimization problems. These challenges are central to many everyday applications, includi

Solar-boosted system turns wasted data center heat into clean power

When you stream a movie, back up a photo or ask ChatGPT a question, somewhere a data center is working hard—and getting hot. Cooling those facilities already consumes a huge share of their electricity, and nearly half of that energy leaves as low-temperature waste heat that’s simply vented into the air.

SeeMe detects hidden signs of consciousness in brain injury patients

SeeMe, a computer vision tool tested by Stony Brook University researchers, was able to detect low-amplitude, voluntary facial movements in comatose acute brain injury patients days before clinicians could identify overt responses.

Close friends know that I have a standing “do not unplug” order should I ever fall into an unresponsive state. If there is even a flicker of a chance that the mind is still working, I will be fine. Keep me plugged in and hang a “do not disturb” sign on whatever apparatus is keeping me alive.

It’s not like you can know in advance what it’s like, but it seems relaxed enough, with plenty of time to think, and I haven’t really gained anything useful from conversations with other humans in years (aside from my editors who always provide valuable information). If it is at all like sleeping, there might be dreams, so, perchance, that’s what I’d be doing in a comatose state. But for the friends by my bedside, how to be certain that the mind is still flickering?

Algorithms that address malicious noise could result in more accurate, dependable quantum computing

Quantum computers promise enormous computational power, but the nature of quantum states makes computation and data inherently “noisy.” Rice University computer scientists have developed algorithms that account for noise that is not just random but malicious. Their work could help make quantum computers more accurate and dependable.

Scientists create scalable quantum node linking light and matter

Quantum scientists in Innsbruck have taken a major leap toward building the internet of the future. Using a string of calcium ions and finely tuned lasers, they created quantum nodes capable of generating streams of entangled photons with 92% fidelity. This scalable setup could one day link quantum computers across continents, enable unbreakable communication, and even transform timekeeping by powering a global network of optical atomic clocks that are so precise they’d barely lose a second over the universe’s entire lifetime.

Quantum ‘curvature’ warps electron flow, hinting at new electronics possibilities

How can data be processed at lightning speed, or electricity conducted without loss? To achieve this, scientists and industry alike are turning to quantum materials, governed by the laws of the infinitesimal. Designing such materials requires a detailed understanding of atomic phenomena, much of which remains unexplored.

A team from the University of Geneva (UNIGE), in collaboration with the University of Salerno and the CNR-SPIN Institute (Italy), has taken a major step forward by uncovering a hidden geometry—until now purely theoretical—that distorts the trajectories of electrons in much the same way gravity bends the path of light. The work, published in Science, opens new avenues for .

Future technologies depend on high-performance materials with unprecedented properties, rooted in quantum physics. At the heart of this revolution lies the study of matter at the microscopic scale—the very essence of . In the past century, exploring atoms, electrons and photons within materials gave rise to transistors and, ultimately, to modern computing.

Scientists Build Quantum Computer That Snaps Together Like LEGOs

A modular quantum processor design shows ~99% fidelity. It paves the way for scalable quantum computing. What do children’s building blocks and quantum computing have in common? The answer is modularity. Constructing a quantum computer as a single, unified device proves extremely difficult. Th

Integrated lithium niobate photonic computing circuit based on efficient and high-speed electro-optic conversion

Efficient electro-optic conversion is central to photonic computing, and thin-film lithium niobate (TFLN) offers this capability. Here, the authors demonstrate computing circuits on the TFLN platform, enabling the next generation of photonic computing systems featuring both high-speed and low-power.

/* */