БЛОГ

Archive for the ‘wearables’ category

Sep 23, 2021

Know Labs unveils pocket-sized glucose monitor that swaps fingersticks for radiofrequency sensors

Posted by in categories: biotech/medical, wearables

Know Labs’ glucose monitors are both powered by its Body-Radio Frequency Identification, or Bio-RFID, technology. The Bio-RFID sensors emit radio waves to measure specific molecular signatures in the blood through the skin, calculated using spectroscopy.

“We know that not all people with diabetes are looking for a wearable continuous glucose monitoring device to manage their diabetes. Some simply want to replace the painful, inconvenient and expensive fingersticks they currently rely on,” said CEO Phil Bosua, who invented the Bio-RFID technology. “The Bio-RFID sensor we currently use for our internal product testing fits in your pocket and is ready for final use, so we decided to create the KnowU as a portable, affordable and convenient alternative requiring no disposable items, such as test strips and lancets.”

In vitro tests have found that the radiofrequency sensor technology was able to measure glucose levels with accuracy comparable to that of Abbott’s Freestyle Libre continuous glucose monitor, which uses a sensor attached to the back of the arm for up to two weeks at a time. According to a 2018 study (PDF) comparing the two, 97% of the UBand’s readings were within 15% of the values calculated by Abbott’s device.

Continue reading “Know Labs unveils pocket-sized glucose monitor that swaps fingersticks for radiofrequency sensors” »

Sep 18, 2021

AugLimb: A compact robotic limb to support humans during everyday activities

Posted by in categories: robotics/AI, wearables

Researchers at Japan Advanced Institute of Science and Technology and University of Tokyo recently developed AugLimb, a compact robotic limb that could support humans as they complete a variety of tasks. This new limb, presented in a paper pre-published on arXiv, can extend up to 250 mm and grasp different objects in a user’s vicinity.

“We are interested in human augmentation technologies, which aim to enhance human capabilities with information and robotics approaches,” Haoran Xie, one of the researchers who carried out the study, told Tech Xplore. “We particularly focus on the physical augmentation of human bodies.”

Continue reading “AugLimb: A compact robotic limb to support humans during everyday activities” »

Sep 15, 2021

Lithium-ion batteries just made a big leap in a tiny product

Posted by in categories: energy, sustainability, transportation, wearables

Sila’s novel anode materials packed far more energy into a new Whoop fitness wearable. The company hopes to do the same soon for electric vehicles.

Sep 8, 2021

Stretching the capacity of flexible energy storage

Posted by in categories: biotech/medical, nanotechnology, robotics/AI, wearables

Some electronics can bend, twist and stretch in wearable displays, biomedical applications and soft robots. While these devices’ circuits have become increasingly pliable, the batteries and supercapacitors that power them are still rigid. Now, researchers in ACS’ Nano Letters report a flexible supercapacitor with electrodes made of wrinkled titanium carbide — a type of MXene nanomaterial — that maintained its ability to store and release electronic charges after repetitive stretching.

One major challenge stretchable electronics must overcome is the stiff and inflexible nature of their energy storage components, batteries and supercapacitors. Supercapacitors that use electrodes made from transitional metal carbides, carbonitrides or nitrides, called MXenes, have desirable electrical properties for portable flexible devices, such as rapid charging and discharging. And the way that 2D MXenes can form multi-layered nanosheets provides a large surface area for energy storage when they’re used in electrodes. However, previous researchers have had to incorporate polymers and other nanomaterials to keep these types of electrodes from breaking when bent, which decreases their electrical storage capacity. So, Desheng Kong and colleagues wanted to see if deforming a pristine titanium carbide MXene film into accordion-like ridges would maintain the electrode’s electrical properties while adding flexibility and stretchability to a supercapacitor.

The researchers disintegrated titanium aluminum carbide powder into flakes with hydrofluoric acid and captured the layers of pure titanium carbide nanosheets as a roughly textured film on a filter. Then they placed the film on a piece of pre-stretched acrylic elastomer that was 800% its relaxed size. When the researchers released the polymer, it shrank to its original state, and the adhered nanosheets crumpled into accordion-like wrinkles.

Sep 3, 2021

Graphene made with lasers for wearable health devices

Posted by in categories: health, particle physics, wearables

Graphene, hexagonally arranged carbon atoms in a single layer with superior pliability and high conductivity, could advance flexible electronics according to a Penn State-led international research team. Huanyu “Larry” Cheng, Dorothy Quiggle Career Development Professor in Penn State’s Department of Engineering Science and Mechanics (ESM), heads the collaboration, which recently published two studies that could inform research and development of future motion detection, tactile sensing and health monitoring devices.

Investigating how laser processing affects graphene form and function

Several substances can be converted into carbon to create graphene through . Called laser-induced graphene (LIG), the resulting product can have specific properties determined by the original material. The team tested this process and published their results in SCIENCE CHINA Technological Sciences.

Sep 2, 2021

Paving the path to electrically-pumped lasers from colloidal-quantum-dot solutions

Posted by in categories: biotech/medical, chemistry, computing, quantum physics, wearables

In a new review article in Nature Photonics, scientists from Los Alamos National Laboratory assess the status of research into colloidal quantum dot lasers with a focus on prospective electrically pumped devices, or laser diodes. The review analyzes the challenges for realizing lasing with electrical excitation, discusses approaches to overcome them, and surveys recent advances toward this objective.

“Colloidal quantum dot lasers have tremendous potential in a range of applications, including integrated optical circuits, wearable technologies, lab-on-a-chip devices, and advanced medical imaging and diagnostics,” said Victor Klimov, a senior researcher in the Chemistry division at Los Alamos and lead author of the cover article in Nature Photonics. “These solution-processed quantum dot present unique challenges, which we’re making good progress in overcoming.”

Heeyoung Jung and Namyoung Ahn, also of Los Alamos’ Chemistry division, are coauthors.

Continue reading “Paving the path to electrically-pumped lasers from colloidal-quantum-dot solutions” »

Aug 31, 2021

Young visually impaired Southampton fans finally see football clearly thanks to Virgin Media

Posted by in category: wearables

Two young visually impaired Southampton fans were finally able to be mascots and watch their beloved Saints in action against Manchester United at the weekend thanks to life-changing wearable technology provided by Virgin Media.

Florence and Joshua both experience issues with their eyesight, meaning that they have never been able to clearly see their favourite team play. Back in March 2,020 Virgin Media gave them cutting-edge technology before they were due to take on the role of mascots for the game against Manchester City.

Aug 31, 2021

Smart ‘E-Skin’ Identifies Your Movements

Posted by in categories: chemistry, engineering, nanotechnology, wearables

Technion scientists have created a wearable motion sensor capable of identifying movements such as bending and twisting. This smart ‘e-skin’ was produced using a highly stretchable electronic material, which essentially forms an electronic skin capable of recognizing the range of movement human joints normally make, with up to half a degree precision.

This breakthrough is the result of collaborative work between researchers from different fields in the Laboratory for Nanomaterial-Based Devices, headed by Professor Hossam Haick from the Technion Wolfson Faculty of Chemical Engineering. It was recently published in Advanced Materials and was featured on the journal’s cover.


This wearable motion sensor, which senses bending and twisting, can be applied in healthcare and manufacturing.

Continue reading “Smart ‘E-Skin’ Identifies Your Movements” »

Aug 28, 2021

Hospital on a chip

Posted by in categories: biotech/medical, robotics/AI, wearables

Circa 2009


The researchers expect to have a working prototype of the product in four years. “We are just at the beginning of this project,” Wang said. “During the first two years, our primary focus will be on the sensor systems. Integrating enzyme logic onto electrodes that can read biomarker inputs from the body will be one of our first major challenges.”

“Achieving the goal of the program is estimated to take nearly a decade,” Chrisey said.

Continue reading “Hospital on a chip” »

Aug 19, 2021

Protocell trainers made from 3D-printed protocells

Posted by in categories: biological, wearables

Circa 2013


Wearable Futures: London designer and researcher Shamees Aden is developing a concept for running shoes that would be 3D-printed from synthetic biological material and could repair themselves overnight.

Shamees Aden’s Protocells trainer would be 3D-printed to the exact size of the user’s foot from a material that would fit like a second skin. It would react to pressure and movement created when running, puffing up to provide extra cushioning where required.

Continue reading “Protocell trainers made from 3D-printed protocells” »

Page 1 of 3812345678Last