Toggle light / dark theme

Roll-to-roll method streamlines DNA sequencing with faster, more efficient fluidics

Researchers at Beijing Genomics and IMDEA Nanociencia institutes have introduced a novel method that could significantly accelerate efficiency and reduce the cost of handling fluidics in DNA sequencing.

Traditional DNA sequencing relies on flow cells, where liquid reagents are repeatedly pumped in and out for each of the sequencing reactions. For large-scale sequencing, this process involves immersing into reagents—a method that works well at industrial scale but is impractical for smaller labs or , where sample sizes are limited and drying effects become a problem.

The new approach turns that process on its head. Instead of pumping fluids through a chamber, the researchers use a roll-to-roll technique that gently shears the liquid across the surface. This dramatically improves efficiency, allowing reagents to be replaced more quickly and uses up to 85 times less material. As a result, DNA sequencing that once took days can now be completed in under 12 hours, with significantly lower costs.

Crystalline material conducts heat even worse than glass and water—and that’s promising

A research team from Aarhus University, Denmark, has measured and explained the exceptionally low thermal conductivity of the crystalline material AgGaGe3Se8. Despite its ordered structure, the material behaves like a glass in terms of heat transport—making it one of the least heat-conductive crystalline solids known to date.

At room temperature, AgGaGe3Se8 exhibits a of just 0.2 watts per meter-Kelvin—which is three times lower than water and five times lower than typical silica glass. The material is composed of silver (Ag), gallium (Ga), germanium (Ge), and selenium (Se), and has previously been studied for its .

Now, for the first time, researchers from iMAT—the Aarhus University Center for Integrated Materials Research—have measured its thermal transport properties and identified the structural origin of its unusually .

Soft materials hold onto ‘memories’ of their past for longer than previously thought

If your hand lotion is a bit runnier than usual coming out of the bottle, it might have something to do with the goop’s “mechanical memory.”

Soft gels and lotions are made by mixing ingredients until they form a stable and uniform substance. But even after a gel has set, it can hold onto “memories,” or residual stress, from the mixing process. Over time, the material can give in to these embedded stresses and slide back into its former, premixed state. Mechanical memory is, in part, why hand lotion separates and gets runny over time.

Now, an MIT engineer has devised a simple way to measure the degree of residual stress in soft materials after they have been mixed, and found that common products like hair gel and shaving cream have longer mechanical memories, holding onto residual stresses for longer periods of time than manufacturers might have assumed.

Scientists find that ice generates electricity when bent

A study co-led by ICN2 reveals that ice is a flexoelectric material, meaning it can produce electricity when unevenly deformed. Published in Nature Physics, this discovery could have major technological implications while also shedding light on natural phenomena such as lightning.

Frozen water is one of the most abundant substances on Earth. It is found in glaciers, on mountain peaks and in polar ice caps. Although it is a well-known material, studying its properties continues to yield fascinating results.

An international study involving ICN2, at the UAB campus, Xi’an Jiaotong University (Xi’an) and Stony Brook University (New York), has shown for the first time that ordinary ice is a flexoelectric material.

For the first time, scientists observed the ‘hidden swirls’ that affect the flow of sand, rocks and snow

What looks like ordinary sand, rocks or snow flowing in one direction can actually hide swirling currents that move in multiple directions beneath the surface.

When grains move in a landslide, most follow the steepest downhill path. This is the “primary flow,” where particles largely follow the herd. But some grains move sideways or swirl in hidden patterns, forming “secondary flows” that subtly influence how far and fast the material travels.

Understanding how grains move beneath the surface could help explain the physics of avalanches and landslides, and even improve how we handle everyday materials like wheat in silos or powders in pharmaceuticals.

Uncovering the mysteries of high-temperature cuprate superconductors

In their quest to explore and characterize high-temperature superconductors, physicists have mostly focused on a material that is not the absolute highest. That’s because that crystal is much easier to split into uniform, easily measurable samples. But in 2024, researchers found a way to grow good crystals that are very similar to the highest temperature superconductor.

Now, many from the same group have analyzed these new crystals and determined why the highest temperature superconductor is indeed higher and what details were missed by looking at the more popular crystal. Their work is published in Physical Review Letters.

The cuprate Bi2223, which at (about 100,000 pascals) superconducts at 110 Kelvin (−163°C), has proven easier to study and specify, even though the similar cuprate Hg1223 superconducts at 134 K.

Antiferromagnets outperform ferromagnets in ultrafast, energy-efficient memory operations

Advances in spintronics have led to the practical use of magnetoresistive random-access memory (MRAM), a non-volatile memory technology that supports energy-efficient semiconductor integrated circuits.

Recently, antiferromagnets— with no net magnetization—have attracted growing attention as promising complements to conventional ferromagnets. While their properties have been extensively studied, clear demonstrations of their technological advantages have remained elusive.

Now, researchers from Tohoku University, the National Institute for Materials Science (NIMS), and the Japan Atomic Energy Agency (JAEA) have provided the first compelling evidence of the unique benefits of antiferromagnets.

A Review of Light-Emitting Diodes and Ultraviolet Light-Emitting Diodes and Their Applications

This paper presents an extensive literature review on Light-Emitting Diode (LED) fundamentals and discusses the historical development of LEDs, focusing on the material selection, design employed, and modifications used in increasing the light output. It traces the evolutionary trajectory of the efficiency enhancement of ultraviolet (UV), blue, green, and red LEDs. It rigorously examines the diverse applications of LEDs, spanning from solid-state lighting to cutting-edge display technology, and their emerging role in microbial deactivation. A detailed overview of current trends and prospects in lighting and display technology is presented. Using the literature, this review offers valuable insights into the application of UV LEDs for microbial and potential viral disinfection.

Artificial heart valve found to be safe following long-term test in animals

A research team, led by the Universities of Bristol and Cambridge, demonstrated that the polymer material used to make the artificial heart valve is safe following a six-month test in sheep.

Currently, the 1.5 million patients who need heart valve replacements each year face trade-offs. Mechanical heart valves are durable but require lifelong blood thinners due to a high risk of blood clots, whereas biological valves, made from animal tissue, typically last between eight to 10 years before needing replacement.

The artificial heart valve developed by the researchers is made from SEBS (styrene-block-ethylene/butyleneblock-styrene) – a type of plastic that has excellent durability but does not require blood thinners – and potentially offers the best of both worlds. However, further testing is required before it can be tested in humans.


An artificial heart valve made from a new type of plastic could be a step closer to use in humans, following a successful long-term safety test in animals.

/* */