Toggle light / dark theme

Is there a cleaner and more environmentally friendly way for scientists to create lithium-6, which is a primary component in creating nuclear fusion fuel? This is what a recent study published in Chem hopes to address as an international team of researchers investigated safer methods for separating lithium-6 from lithium-7, which is a common procedure for creating nuclear fusion fuel. However, this procedure has long-required liquid mercury, whose exposure often results in sever neurodevelopmental disorders, including memory loss, along with lung, kidney, and nervous system damage.

For the study, the researchers discovered their novel method purely by accident while they were working with “produced water”, which is groundwater that is forced to the surface during drilling processes for gas and oil that needs cleaning before it’s pumped back underground, and this process repeats. To accomplish this cleaning process, a membrane is used to filter out unwanted components, during which the researchers found they were filtering lithium within this now-surface groundwater.

“We saw that we could extract lithium quite selectively given that there was a lot more salt than lithium present in the water,” said Dr. Sarbajit Banerjee, who is a professor of chemistry at ETH Zurich and a co-author on the study. “That led us to wonder whether this material might also have some selectivity for the 6-lithium isotope.”

Imagine a robot that can walk, without electronics, and only with the addition of a cartridge of compressed gas, right off the 3D-printer. It can also be printed in one go, from one material.

That is exactly what roboticists have achieved in robots developed by the Bioinspired Robotics Laboratory at the University of California San Diego. They describe their work in an advanced online publication in the journal Advanced Intelligent Systems.

To achieve this feat, researchers aimed to use the simplest technology available: a desktop 3D-printer and an off-the-shelf printing material. This design approach is not only robust, it is also cheap—each robot costs about $20 to manufacture.

Two scientists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory have discovered a new phase of matter while studying a model system of a magnetic material.

The phase is a never-before-seen pattern of electron spins—the tiny “up” and “down” magnetic moments carried by every electron. It consists of a combination of highly ordered “cold” spins and highly disordered “hot” spins, and it has thus been dubbed “half ice, half fire.” The researchers discovered the new phase while studying a one-dimensional model of a type of magnetic material called a ferrimagnet.

“Half ice, half fire” is notable not only because it has never been observed before, but also because it is able to drive extremely sharp switching between phases in the material at a reasonable, finite temperature. This phenomenon could one day result in applications in the energy and information technology industries.

Physicists at Princeton stumbled upon a mysterious quantum pattern hidden in twisted graphene — something theorized nearly 50 years ago but never seen before. What they found wasn’t part of the plan… and it looks like a butterfly.

Phase changes are central to the world around us. Probably the most familiar example is when ice melts into water or water boils into steam, but phase changes also underlie heating systems and even digital memory, such as that used in smartphones.

Triggered by or electricity, some materials can switch between two different phases that represent binary code 0s and 1s to store information. Understanding how a material transforms from one state or phase to another is key to tailoring materials with specific properties that could, for instance, increase switching speed or operate at lower energy costs.

Yet researchers have never been able to directly visualize how these transformations unfold in real time. We often assume materials are perfect and look the same everywhere, but “part of the challenge is that these processes are often heterogeneous, where different parts of the material change in different ways, and involve many different length scales and timescales,” said Aaron Lindenberg, co-author and SLAC and Stanford University professor.

Scientists at Princeton University have made a groundbreaking discovery in quantum materials, revealing that electron energy levels in certain systems follow a fractal pattern known as Hofstadter’s butterfly. This phenomenon was first theorized in 1976 but had never been directly observed in a re

Lithium-6 is essential for producing nuclear fusion fuel, but isolating it from the much more common isotope, lithium-7, usually requires liquid mercury, which is extremely toxic. Now, researchers have developed a mercury-free method to isolate lithium-6 that is as effective as the conventional method. The new method is presented in the journal Chem.

“This is a step towards addressing a major roadblock to nuclear energy,” says chemist and senior author Sarbajit Banerjee of ETH Zürich and Texas A&M University. “Lithium-6 is a critical material for the renaissance of nuclear energy, and this method could represent a viable approach to isotope separation.”

The conventional method used to isolate lithium-6, called the COLEX process, involves liquid mercury and has been banned in the United States since 1963 due to pollution concerns.