Toggle light / dark theme

Astronomers observe a giant outburst of X-ray binary RX J0440.9+4431

Astronomers from Wuhan University in China have employed the Insight-HXMT satellite to observe a giant outburst that occurred in the X-ray binary RX J0440.9+4431 about three years ago. Results of the observations, presented July 24 on the pre-print server arXiv, provide a wealth of data regarding the properties and behavior of this system.

Scientists just recreated the Universe’s first molecule and solved a 13-billion-year-old puzzle

Long before stars lit up the sky, the universe was a hot, dense place where simple chemistry quietly set the stage for everything to come. Scientists have now recreated the first molecule ever to form, helium hydride, and discovered it played a much bigger role in the birth of stars than we thought. Using a special ultra-cold lab setup, they mimicked conditions from over 13 billion years ago and found that this ancient molecule helped cool the universe just enough for stars to ignite. Their findings could rewrite part of the story about how the cosmos evolved from darkness to light.

Galaxy Scale Megastructures & Kardashev 3 Civilizations

Imagine engineering projects so vast they mold galaxies into new shapes. We’ll explore the staggering feats of Kardashev-3 and beyond civilizations, crafting CARD galaxies, Birch Planets, and even rearranging superclusters.

Watch my exclusive video Dark Biospheres: https://nebula.tv/videos/isaacarthur–
Get Nebula using my link for 40% off an annual subscription: https://go.nebula.tv/isaacarthur.
Get a Lifetime Membership to Nebula for only $300: https://go.nebula.tv/lifetime?ref=isa
Use the link https://gift.nebula.tv/isaacarthur to give a year of Nebula to a friend for just $36.

Visit our Website: http://www.isaacarthur.net.
Join Nebula: https://go.nebula.tv/isaacarthur.
Support us on Patreon: / isaacarthur.
Support us on Subscribestar: https://www.subscribestar.com/isaac-a
Facebook Group: / 1583992725237264
Reddit: / isaacarthur.
Twitter: / isaac_a_arthur on Twitter and RT our future content.
SFIA Discord Server: / discord.
Credits:
Spaceport Innovations — Designing the Next Generation of Launch Sites.
August 3, 2025; Episode 746
Written, Produced & Narrated by: Isaac Arthur.
Galaxy-Scale Megastructures & Kardashev-3 Civilizations.
Written by: Isaac Arthur.
Editor: Darius Said.
Graphics: Jeremy Jozwik, Ken York, Sergio Botero, Steve Bowers.
Select imagery/video supplied by Getty Images.
Music Courtesy of Epidemic Sound http://epidemicsound.com/creator.
Stellardrone, \

Astronomers Discover Seeds of Life in Young Star’s Planet-Forming Disc

Astronomers have discovered signs of complex organic molecules, considered precursors to sugars and amino acids, within a planet-forming disc. Using the powerful Atacama Large Millimeter/submillimeter Array (ALMA), a research team led by Abubakar Fadul from the Max Planck Institute for Astronomy

It Shouldn’t Exist: Astronomers Discover a Planet Orbiting the “Wrong Way”

Most stars throughout the Universe are part of binary or multiple star systems. In these systems, a nearby companion star can make it difficult for planets to form and remain in stable orbits around just one of the stars.

A research team made up of international astrophysicists, led by Professor Man Hoi Lee from the University of Hong Kong’s Department of Earth Sciences and Department of Physics, along with MPhil student Ho Wan Cheng, has confirmed a highly unusual planetary discovery.

They identified a planet orbiting in the opposite direction of its binary stars’ movement, known as a retrograde orbit, within the nu Octantis (nu Octantis) binary system. Their work also sheds light on how the evolution of binary stars may have influenced the planet’s origin. These results have been published in the journal Nature.

Measuring three-nucleon interactions to better understand nuclear data and neutron stars

Though atomic nuclei are often depicted as static clusters of protons and neutrons (nucleons), the particles are actually bustling with movement. Thus, the nucleons carry a range of momenta. Sometimes, these nucleons may even briefly engage through the strong interaction. This interaction between two nucleons can boost the momentum of both and form high-momentum nucleon pairs. This effect yields two-nucleon short-range correlations.

Experiments at the U.S. Department of Energy’s Thomas Jefferson National Accelerator Facility have studied these pairs to learn how protons and neutrons preferentially pair up at short distances. However, short-range correlations involving three or more nucleons haven’t been detected yet.

Now, in a study published in Physics Letters B, researchers used data from a 2018 experiment in Jefferson Lab’s Hall A to measure the signature of three– short-range correlations for the first time.

/* */