Toggle light / dark theme

Criticality in Nature’s Strongest Force

Experiments at the Relativistic Heavy Ion Collider give the first hints of a critical point in the hot quark–gluon “soup” that is thought to have pervaded the infant Universe.

The strongest force of nature—the one holding nuclear matter together—is described by the theory of quantum chromodynamics (QCD). The fundamental particles of QCD are quarks and gluons, which are normally bound within composite particles called hadrons—the most well-known of which are protons and neutrons. Only at extreme temperatures around 1012 K (a million times hotter than the core of the Sun) can quarks and gluons become deconfined, leading to a new phase of matter called the quark–gluon plasma. At vanishing densities, the transition between confined hadrons and the quark–gluon plasma is known to be ill-defined—happening across a wide range of temperatures rather than at a specific temperature. But theory predicts that at large densities and moderately high temperatures, a critical point exists, where the “fuzziness” disappears and a clear distinction can be made between the gas-like hadrons and the liquid-like quark–gluon mix [1–3].

Quantum error correction codes enable efficient scaling to hundreds of thousands of qubits

A new class of highly efficient and scalable quantum low-density parity-check error correction codes, capable of performance approaching the theoretical hashing bound, has been developed by scientists at the Institute of Science, Tokyo, Japan. These novel error correction codes can handle quantum codes with hundreds of thousands of qubits, potentially enabling large-scale fault-tolerant quantum computing, with applications in diverse fields, including quantum chemistry and optimization problems.

‘A real physical thing’: Quantum computer exhibit at O’Hare seeks to make the technology tangible

Chicago has quickly emerged as a hub for quantum computing, with the state of Illinois and technology companies pouring millions of dollars into developing a campus to build the world’s first commercially viable quantum computer on the city’s Southeast Side.

But what does a quantum computer even look like? And how do they work?

Those are questions that a new exhibit unveiled at Chicago’s O’Hare International Airport seeks to answer. In Terminal 1, near the massive model of a dinosaur skeleton, travelers of all ages paused on their brisk walks through the concourse to look at the model of the inside of a quantum computer, which resembles a large golden chandelier with four “tiers,” copper wiring and a chip at the bottom. On a screen on one side of the fiberglass case protecting the quantum computer, travelers were able to watch a video explaining the science behind it.

“Like Talking on the Telephone” — Quantum Breakthrough Lets Individual Atoms Chat Like Never Before

Scientists have linked nuclear spins inside silicon chips, marking a leap toward scalable quantum computers. Engineers at UNSW have achieved a major breakthrough in quantum computing by creating what are known as “quantum entangled states.” In this phenomenon, two particles become so strongly conne

Physicists demonstrate 3,000 quantum-bit system capable of continuous operation

One often-repeated example illustrates the mind-boggling potential of quantum computing: A machine with 300 quantum bits could simultaneously store more information than the number of particles in the known universe.

Now process this: Harvard scientists just unveiled a system that was 10 times bigger and the first quantum machine able to operate continuously without restarting.

In a paper published in the journal Nature, the team demonstrated a system of more than 3,000 (or qubits) that could run for more than two hours, surmounting a series of technical challenges and representing a significant step toward building the super computers, which could revolutionize science, medicine, finance, and other fields.

The promise of a quantum computing revolution

Integrated circuits form the basis of modern ‘classical’ computing. There can be hundreds of these microchips in a laptop or personal computer. Their size has meant that now mobile phones have computing power thousands of times faster than the most powerful supercomputers built in the 1980s.

Since the 1990s, supercomputers have come into their own. The most powerful supercomputer in the world, Frontier based in the US, has a million times more computing power than top-tier gaming PCs. But these devices are still based on the classical technology of integrated circuits and are therefore limited in their capabilities.

Quantum computers promise to be able to process calculations thousands, even millions of times faster than modern computers.

In a first, scientists observe short-range order in semiconductors

Inside the microchips powering your devices, atoms aren’t just randomly scattered. They follow a hidden order that can change how semiconductors behave.

A team of researchers from the Lawrence Berkeley National Laboratory (Berkeley Lab) and George Washington University has, for the first time, observed these tiny patterns, called short-range order (SRO), directly in semiconductors.

This discovery is a game-changer, as understanding how atoms naturally arrange themselves could let researchers design materials with desirable electronic properties. Such control could revolutionize quantum computing, neuromorphic devices that mimic the brain, and advanced optical detectors.

Free Will, Quantum & Orchestrated Objective Reduction

An extended exploration of what science tells us about free will and consciousness in a quantum universe, including Sir Roger Penrose’s theory of Orchestrated Objective Reduction.

Watch my exclusive video ISRU: https://nebula.tv/videos/isaacarthur–
Get Nebula using my link for 40% off an annual subscription: https://go.nebula.tv/isaacarthur.
Get a Lifetime Membership to Nebula for only $300: https://go.nebula.tv/lifetime?ref=isa
Use the link gift.nebula.tv/isaacarthur to give a year of Nebula to a friend for just $30.

Join this channel to get access to perks:
/ @isaacarthursfia.
Visit our Website: http://www.isaacarthur.net.
Support us on Patreon: / isaacarthur.
Support us on Subscribestar: https://www.subscribestar.com/isaac-a
Facebook Group: / 1583992725237264
Reddit: / isaacarthur.
Twitter: / isaac_a_arthur on Twitter and RT our future content.
SFIA Discord Server: / discord.
Episode 353a, June 30, 2024 Written, Produced & Narrated by Isaac Arthur.
Music Courtesy of Epidemic Sound http://epidemicsound.com/creator.
Select imagery/video supplied by Getty Images.

/* */