To capture higher-definition and sharper images of cosmological objects, astronomers sometimes combine the data collected by several telescopes. This approach, known as long-baseline interferometry, entails comparing the light signals originating from distant objects and picked up by different telescopes that are at different locations, then reconstructing images using computational techniques.
Conventional long-baseline interferometry methods combine the light signals collected by different telescopes using an interferometer. To do this, however, it relies on delicate optical links that bring light beams together and that are difficult to establish when telescopes are located at long distances from each other.
Researchers at University of Arizona, University of Maryland and NASA Goddard Space Flight Center recently proposed an alternative approach to achieve higher resolution telescopy images that leverages a quantum effect known as entanglement. Their proposed approach, outlined in a paper published in Physical Review Letters, allows distant entangled telescopes, which share a unified quantum state irrespective of how distant they are, to extract the same information about a given scene or cosmological image.