Toggle light / dark theme

A new optical amplifier is changing the game. Unlike conventional amplifiers, this chip-based breakthrough leverages optical nonlinearity rather than rare-earth elements, allowing signals to strengthen themselves. The result? A compact, high-performance device with a bandwidth three times wider than traditional solutions.

Expanding the Limits of Optical Amplification

Modern communication networks rely on optical signals to transmit massive amounts of data. However, like weak radio signals, these optical signals need amplification to travel long distances without degrading. For decades, erbium-doped fiber amplifiers (EDFAs) have been the standard solution, extending transmission range without requiring frequent signal regeneration. Despite their effectiveness, EDFAs operate within a limited spectral range, restricting the growth of optical networks.

Supersolids are a strange quantum state of matter that combines properties of solids and liquids.

Now they’ve gotten even more mind-bending, as scientists have transformed light itself into a supersolid. It’s a breakthrough that could lead to new quantum and photonic technologies.

Beyond the everyday solids, liquids, gases, and plasmas, an entire zoo of exotic states of matter exists. Long theorized but only recently created, a supersolid has a crystalline structure like a regular solid, but it can also, counterintuitively, flow freely like a fluid.

In September 2024, OpenAI released its o1 model, trained on large-scale reinforcement learning, giving it “advanced reasoning” capabilities. Unfortunately, the details of how they pulled this off were never shared publicly. Today, however, DeepSeek (an AI research lab) has replicated this reasoning behavior and published the full technical details of their approach. In this article, I will discuss the key ideas behind this innovation and describe how they work under the hood.

Researchers from Tsinghua University, the Beijing Institute of Technology, the University of Wollongong (Australia), and the Hefei Institutes of Physical Science of the Chinese Academy of Sciences, have achieved an ultrahigh electrostrain of 1.9% in (K, Na)NbO3 (KNN) lead-free piezoelectric ceramics.

The breakthrough, facilitated by the (ESR) spectrometer at the Steady High Magnetic Field Experimental Facility (SHMFF), marks a significant advancement in piezoelectric material performance.

The findings are published in Nature Materials.

A breakthrough in heavy-element chemistry shatters long-held assumptions about transuranium elements. Researchers have discovered “berkelocene,” the first organometallic molecule to be characterized containing the heavy element berkelium. The molecule was synthesized using just 0.3 milligram.

Artificial Intelligence (AI) is, without a doubt, the defining technological breakthrough of our time. It represents not only a quantum leap in our ability to solve complex problems but also a mirror reflecting our ambitions, fears, and ethical dilemmas. As we witness its exponential growth, we cannot ignore the profound impact it is having on society. But are we heading toward a bright future or a dangerous precipice?

This opinion piece aims to foster critical reflection on AI’s role in the modern world and what it means for our collective future.

AI is no longer the stuff of science fiction. It is embedded in nearly every aspect of our lives, from the virtual assistants on our smartphones to the algorithms that recommend what to watch on Netflix or determine our eligibility for a bank loan. In medicine, AI is revolutionizing diagnostics and treatments, enabling the early detection of cancer and the personalization of therapies based on a patient’s genome. In education, adaptive learning platforms are democratizing access to knowledge by tailoring instruction to each student’s pace.

These advancements are undeniably impressive. AI promises a more efficient, safer, and fairer world. But is this promise being fulfilled? Or are we inadvertently creating new forms of inequality, where the benefits of technology are concentrated among a privileged few while others are left behind?

One of AI’s most pressing challenges is its impact on employment. Automation is eliminating jobs across various sectors, including manufacturing, services, and even traditionally “safe” fields such as law and accounting. Meanwhile, workforce reskilling is not keeping pace with technological disruption. The result? A growing divide between those equipped with the skills to thrive in the AI-driven era and those displaced by machines.

Another urgent concern is privacy. AI relies on vast amounts of data, and the massive collection of personal information raises serious questions about who controls these data and how they are used. We live in an era where our habits, preferences, and even emotions are continuously monitored and analyzed. This not only threatens our privacy but also opens the door to subtle forms of manipulation and social control.

Then, there is the issue of algorithmic bias. AI is only as good as the data it is trained on. If these data reflect existing biases, AI can perpetuate and even amplify societal injustices. We have already seen examples of this, such as facial recognition systems that fail to accurately identify individuals from minority groups or hiring algorithms that inadvertently discriminate based on gender. Far from being neutral, AI can become a tool of oppression if not carefully regulated.

Who Decides What Is Right?

AI forces us to confront profound ethical questions. When a self-driving car must choose between hitting a pedestrian or colliding with another vehicle, who decides the “right” choice? When AI is used to determine parole eligibility or distribute social benefits, how do we ensure these decisions are fair and transparent?

The reality is that AI is not just a technical tool—it is also a moral one. The choices we make today about how we develop and deploy AI will shape the future of humanity. But who is making these decisions? Currently, AI’s development is largely in the hands of big tech companies and governments, often without sufficient oversight from civil society. This is concerning because AI has the potential to impact all of us, regardless of our individual consent.

A Utopia or a Dystopia?

The future of AI remains uncertain. On one hand, we have the potential to create a technological utopia, where AI frees us from mundane tasks, enhances productivity, and allows us to focus on what truly matters: creativity, human connection, and collective well-being. On the other hand, there is the risk of a dystopia where AI is used to control, manipulate, and oppress—dividing society between those who control technology and those who are controlled by it.

The key to avoiding this dark scenario lies in regulation and education. We need robust laws that protect privacy, ensure transparency, and prevent AI’s misuse. But we also need to educate the public on the risks and opportunities of AI so they can make informed decisions and demand accountability from those in power.

Artificial Intelligence is, indeed, the Holy Grail of Technology. But unlike the medieval legend, this Grail is not hidden in a distant castle—it is in our hands, here and now. It is up to us to decide how we use it. Will AI be a tool for building a more just and equitable future, or will it become a weapon that exacerbates inequalities and threatens our freedom?

The answer depends on all of us. As citizens, we must demand transparency and accountability from those developing and implementing AI. As a society, we must ensure that the benefits of this technology are shared by all, not just a technocratic elite. And above all, we must remember that technology is not an end in itself but a means to achieve human progress.

The future of AI is the future we choose to build. And at this critical moment in history, we cannot afford to get it wrong. The Holy Grail is within our reach—but its true value will only be realized if we use it for the common good.

__
Copyright © 2025, Henrique Jorge

[ This article was originally published in Portuguese in SAPO’s technology section at: https://tek.sapo.pt/opiniao/artigos/o-santo-graal-da-tecnologia ]

A research team led by the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) has discovered “berkelocene,” the first organometallic molecule to be characterized containing the heavy element berkelium.

Organometallic molecules, which consist of a metal ion surrounded by a carbon-based framework, are relatively common for early actinide elements like uranium (atomic number 92) but are scarcely known for later actinides like berkelium (atomic number 97).

“This is the first time that evidence for the formation of a chemical bond between berkelium and carbon has been obtained. The discovery provides new understanding of how berkelium and other actinides behave relative to their peers in the periodic table,” said Stefan Minasian, a scientist in Berkeley Lab’s Chemical Sciences Division and one of four co-corresponding authors of a new study published in the journal Science.


Breakthrough in heavy-element chemistry shatters long-held assumptions about transuranium elements.

Spotting flaws is sometimes the first ripple in making waves of innovation.

Comparing directly observed with the latest advanced simulations, researchers from the Research Organization of Information and Systems (ROIS) and their colleagues have revealed significant limitations in current atmospheric modeling. Their findings emphasize the complexities of these atmospheric waves and their impacts on weather and climate systems.

The study was published in the Journal of the Meteorological Society of Japan on Sept. 2.

InnovativeTsinghua researchers proposed a reconfigurable quantum entanglement distribution network using siliconphotonics, reducing the required wavelength channels to O(N) and improving the scalability, reconfigurability, and performance of quantum technology.

More: bit.ly/3W9PvNx