Toggle light / dark theme

Antennas receive and transmit electromagnetic waves, delivering information to our radios, televisions, cellphones and more. Researchers in the McKelvey School of Engineering at Washington University in St. Louis imagines a future where antennas reshape even more applications.

Their new metasurfaces, ultra-thin materials made of tiny nanoantennas that can both amplify and control light in very precise ways, could replace conventional refractive surfaces from eyeglasses to smartphone lenses and improve dynamic applications such as augmented reality/ and LiDAR ( and ranging).

While metasurfaces can manipulate light very precisely and efficiently, enabling powerful optical devices, they often suffer from a major limitation: Metasurfaces are highly sensitive to the , meaning they can only interact with light that is oriented and traveling in a certain direction. While this is useful in polarized sunglasses that block glare and in other communications and imaging technologies, requiring a specific polarization dramatically reduces the flexibility and applicability of metasurfaces.

The limitations of two-dimensional (2D) displays in representing the depth of the three-dimensional (3D) world have prompted researchers to explore alternatives that offer a more immersive experience. Volumetric displays (VDs), which generate 3D images using volumetric pixels (voxels), represent a breakthrough in this pursuit.

Unlike or stereoscopic displays, VDs deliver a natural visual experience without requiring head-mounted devices or complex visual tricks. Among these, laser-based VDs stand out for their , high contrast ratios, and wide color gamut. However, the commercial viability of such systems has been hindered by challenges such as low resolution, ghost voxels, and the absence of tunable, full-color emission in a single material.

To address these limitations, researchers from Yildiz Technical University, led by Miray Çelikbilek Ersundu, and Ali Erçin Ersundu, have developed innovative RE3+-doped monolithic glasses (RE = Ho, Tm, Nd, Yb) capable of tunable full-color emission under near-infrared (NIR) laser excitation.

Meta Platforms is assembling a specialized team within its Reality Labs division, led by Marc Whitten, to develop the AI, sensors, and software that could power the next wave of humanoid robots.

S platform capabilities. + s social media platforms. We believe expanding our portfolio to invest in this field will only accrue value to Meta AI and our mixed and augmented reality programs, Bosworth said. + How is Meta planning to advance its robotics work?

S CTO Andrew Bosworth. Bloomberg News reported the hiring first. + Meta has also appointed John Koryl as vice president of retail. Koryl, the former CEO of second-hand e-commerce platform The RealReal, will focus on boosting direct sales of Meta’s Quest mixed reality headsets and AI wearables, including Ray-Ban Meta smart glasses, developed in partnership with EssilorLuxottica.

S initial play is to become the backbone of the industry similar to what Google The company has already started talks with robotics firms like Unitree Robotics and Figure AI. With plans to hire 100 engineers this year and billions committed to AI and AR/VR, Meta is placing a major bet on humanoid robots as the next leap in smart home technology.


What if love could be programmed? AI companions are here, offering customizable relationships tailored to your every desire. From apps like Replika to futuristic VR partners, we explore the rise of AI girlfriends and their potential to redefine how we connect. Could this technology solve loneliness—or destroy real human relationships? And what would a world without women look like, with just AI partners and baby incubators? Dive into this provocative discussion and share your thoughts below!

#AIGirlfriends #FutureOfLove #AICompanions #DigitalRelationships #TechAndSociety #AIInnovation #VirtualReality #LonelinessSolutions #MenAndTech #EthicalAI

Researchers at the University of Liège (Belgium) have uncovered a previously unknown mechanism that regulates the immune response against parasites. During a parasitic infection, specific immune cells, known as virtual memory T cells, become activated and express a surface molecule called CD22, which prevents an excessive immune reaction. This discovery could help in better-controlling inflammation and improving immune responses to infections.

The findings are published in the journal Science Immunology.

Nearly a quarter of the world’s population is infected by helminths, that establish themselves in the intestine for extended periods. In response to these invaders, the immune system deploys complex defense strategies. In their recent study, the researchers revealed a previously unsuspected mechanism that regulates the activation of certain : CD8+ virtual memory T cells (TVM).

A research team at POSTECH has developed a novel multidimensional sampling theory to overcome the limitations of flat optics. Their study not only identifies the constraints of conventional sampling theories in metasurface design but also presents an innovative anti-aliasing strategy that significantly enhances optical performance. Their findings were published in Nature Communications.

Flat optics is a cutting-edge technology that manipulates light at the nanoscale by patterning ultra-thin surfaces with nanostructures. Unlike traditional optical systems that rely on bulky lenses and mirrors, enables ultra-compact, high-performance optical devices. This innovation is particularly crucial in miniaturizing smartphone cameras (reducing the “camera bump”) and advancing AR/VR technologies.

Metasurfaces, one of the most promising applications of flat optics, rely on hundreds of millions of nanostructures to precisely sample and control the phase distribution of light. Sampling, in this context, refers to the process of converting analog optical signals into discrete data points—similar to how the human brain processes visual information by rapidly capturing multiple images per second to create continuous motion perception.

Microscale light-emitting diodes (micro-LEDs) are emerging as a next-generation display technology for optical communications, augmented and virtual reality, and wearable devices. Metal-halide perovskites show great potential for efficient light emission, long-range carrier transport, and scalable manufacturing, making them potentially ideal candidates for bright LED displays.

However, manufacturing thin-film perovskites suitable for micro-LED displays faces serious challenges. For example, thin-film perovskites may exhibit inhomogeneous light emission, and their surfaces may be unstable when subjected to lithography. For these reasons, solutions are needed to make thin-film perovskites compatible with micro-LED devices.

Recently, a team of Chinese researchers led by Professor Wu Yuchen at the Technical Institute of Physics and Chemistry of the Chinese Academy of Sciences has made significant strides in overcoming these challenges. The team has developed a novel method for the remote epitaxial growth of continuous crystalline perovskite thin films. This advance allows for seamless integration into ultrahigh-resolution micro-LEDs with pixels less than 5 μm.

I had a conversation with NVIDIA CEO Jensen Huang and we spoke about groundbreaking developments in physical AI and other big announcements made at CES. Jensen discusses how NVIDIA Cosmos and Omniverse are revolutionizing robot training, enabling machines to understand the physical world and learn in virtual environments — reducing training time from years to hours.

He shares insights on NVIDIA DRIVE AI’s autonomous vehicle developments, including their major partnership with Toyota, and talks about the critical role of safety in their three-computer system approach.

Jensen also shares what he considers to be the most impactful technology of our time! This conversation left me feeling excited for the future of technology and where we’re headed. I hope you enjoy it as much as I did.

Timestamps:

Virtual reality headsets like the Meta Quest or Apple Vision Pro will be a Christmas gift in more than one home this year.

Now mice are getting in on the action.

Researchers have developed a set of VR goggles for lab mice for use in brain studies, according to a report published recently in the journal Nature Methods.