Toggle light / dark theme

Engineers send a wireless curveball to deliver massive amounts of data

High frequency radio waves can wirelessly carry the vast amount of data demanded by emerging technology like virtual reality, but as engineers push into the upper reaches of the radio spectrum, they are hitting walls. Literally.

Ultrahigh frequency bandwidths are easily blocked by objects, so users can lose transmissions walking between rooms or even passing a bookcase.

Now, researchers at Princeton Engineering have developed a machine-learning system that could allow ultrahigh frequency transmissions to dodge those obstacles. In an article in Nature Communications, the researchers unveiled a system that shapes transmissions to avoid obstacles coupled with a neural network that can rapidly adjust to a complex and dynamic environment.

Nissan confirms design studio data breach claimed by Qilin ransomware

Nissan Japan has confirmed to BleepingComputer that it suffered a data breach following unauthorized access to a server of one of its subsidiaries, Creative Box Inc. (CBI).

This came in response to the Qilin ransomware group’s claims that they had stolen four terabytes of data from CBI, including 3D vehicle design models, internal reports, financial documents, VR design workflows, and photos.

“On August 16, 2025, suspicious access was detected on the data server of Creative Box Inc. (CBI), a company contracted by Nissan for design work,” stated a Nissan spokesperson to BleepingComputer.

AI tech breathes life into virtual companion animals

Researchers at UNIST have developed an innovative AI technology capable of reconstructing highly detailed three-dimensional (3D) models of companion animals from a single photograph, enabling realistic animations. This breakthrough allows users to experience lifelike digital avatars of their companion animals in virtual reality (VR), augmented reality (AR), and metaverse environments.

Identifying a compass in the human brain

Zhengang Lu and Russell Epstein, from the University of Pennsylvania, led a study to explore how people maintain their sense of direction while navigating naturalistic, virtual reality cities.

As reported in their JNeurosci paper, the researchers collected neuroimaging data while 15 participants performed a taxi-driving task in a virtual reality city. Two represented a forward-facing direction as people moved around. This was consistent across variations of the city with different visual features.

The signal was also consistent across different phases of the task (i.e., picking up a passenger versus driving a passenger to their drop-off location) and various locations in the city. Additional analyses suggest that these brain regions represent a broad range of facing directions by keeping track of direction relative to the north–south axis of the environment.

Nanodevice uses sound to sculpt light, paving the way for better displays and imaging

Light can behave in very unexpected ways when you squeeze it into small spaces. In a paper in the journal Science, Mark Brongersma, a professor of materials science and engineering at Stanford University, and doctoral candidate Skyler Selvin describe the novel way they have used sound to manipulate light that has been confined to gaps only a few nanometers across—allowing the researchers exquisite control over the color and intensity of light mechanically.

The findings could have broad implications in fields ranging from computer and virtual reality displays to 3D holographic imagery, optical communications, and even new ultrafast, light-based neural networks.

The new device is not the first to manipulate light with sound, but it is smaller and potentially more practical and powerful than conventional methods. From an engineering standpoint, acoustic waves are attractive because they can vibrate very fast, billions of times per second.

New 3D headset uses holograms and AI to create lifelike mixed reality visuals

Using 3D holograms polished by artificial intelligence, researchers introduce a lean, eyeglass-like 3D headset that they say is a significant step toward passing the “Visual Turing Test.”

“In the future, most virtual reality displays will be holographic,” said Gordon Wetzstein, a professor of electrical engineering at Stanford University, holding his lab’s latest project: a virtual reality display that is not much larger than a pair of regular eyeglasses. “Holography offers capabilities that we can’t get with any other type of display in a package that is much smaller than anything on the market today.”

Holography is a Nobel Prize-winning 3D display technique that uses both the reflecting from an object, as with a traditional photograph, and the phase of the light (the way the waves synchronize), to produce a hologram, a highly realistic three-dimensional image of the original object.

/* */