БЛОГ

Archive for the ‘solar power’ category

Dec 24, 2024

Revolutionizing Clean Energy: Researchers Develop Breakthrough Hydrogen Nanoreactor

Posted by in categories: biological, engineering, solar power, sustainability

The University of Liverpool has created a hybrid nanoreactor that uses sunlight to produce hydrogen efficiently, offering a sustainable and cost-effective alternative to traditional photocatalysts.

The University of Liverpool has announced a major breakthrough in engineering biology and clean energy. Researchers have developed a groundbreaking light-powered hybrid nanoreactor that combines the natural efficiency of biological processes with the precision of synthetic design to produce hydrogen, a clean and renewable energy source.

Detailed in ACS Catalysis, the study introduces an innovative solution to a longstanding challenge in solar energy utilization for fuel production. While nature’s photosynthesis systems excel at harnessing sunlight, artificial systems have historically fallen short. This new approach to artificial photocatalysis represents a significant step forward in bridging that performance gap.

Dec 24, 2024

Lasers powered by sunlight could beam energy through space to support interplanetary missions

Posted by in categories: solar power, space travel, sustainability

New research has found a way to power spacecraft with lasers generated using solar energy alone.

Dec 23, 2024

Scientists push boundaries with high-tech device that turns heat source into readily available energy — here’s how it works

Posted by in categories: business, solar power, sustainability

The International Renewable Energy Agency says breakthroughs like this, along with others such as solar panels that work at night or China’s flywheel energy storage project, are key to cutting back on dirty energy use and creating stronger and more reliable power systems.

“Further international cooperation is vital to deliver fit-for-purpose grids, sufficient energy storage and faster electrification, which are integral to move clean energy transitions quickly and securely,” Executive Director of the International Energy Agency Fatih Birol said in an IEA report.

Continue reading “Scientists push boundaries with high-tech device that turns heat source into readily available energy — here’s how it works” »

Dec 23, 2024

Is Low Solar Energy Causing Reduction in Serotonin and Leading to the Obesity and Mental Health Crisis?

Posted by in categories: biotech/medical, health, neuroscience, sex, solar power

DOI: Abstract We are living in a historical period in respect to the deterioration in public health, as we experience the rise of the catastrophic obesity epidemic and mental health crisis in recent decades, despite the great efforts from the scientific and medical community to seek health solutions and to try to find cures to the enormous human suffering and economic costs resulting by this collapse in public health. This trend has reached such a critical level that it jeopardizes society when over 40% of the population is obese in the United States, suffering grave medical health conditions, even as the expenditure on public health is rising exponentially to over 20% of gross domestic product. This should point to a monumental failure in our fundamental understanding of basic human biology and health. This article suggests that our current Western reductionist scientific paradigm in both biology and medicine has proved impotent and failed us completely. Therefore, the current cultural health crises require a more holistic approach to human biology and health in terms of chronobiological trends. The emerging neuroscience of brain energy metabolism will be considered as a holistic model for understanding how solar cycles affect our civilization and drive our sex and growth hormones and neurotransmitters that shape both our physical and mental health.

Dec 22, 2024

New Solar Discovery Could Revolutionize Hydrogen Production

Posted by in categories: chemistry, nanotechnology, solar power, sustainability

A new solar cell process using Sn(II)-perovskite oxide material offers a promising pathway for green hydrogen production through water splitting, advancing sustainable energy technologies.

Experts in nanoscale chemistry have made significant progress toward sustainable and efficient hydrogen production from water using solar power.

An international collaborative study led by Flinders University, involving researchers from South Australia, the US, and Germany, has uncovered a novel solar cell process that could play a key role in future technologies for photocatalytic water splitting—a critical step in green hydrogen production.

Dec 13, 2024

Fraunhofer ISE concludes perovskite-silicon tandem solar cell project

Posted by in categories: chemistry, solar power, sustainability

The researchers produced new materials with perovskite crystal structures and compared them with existing materials at the cell level, concluding that high efficiencies can only be achieved with lead perovskites. They then fabricated highly efficient demonstrators, such as a perovskite silicon tandem solar cell of more than 100 sq cm with screen-printed metallization.

The project also included the development of a scalable perovskite-silicon tandem solar cell that achieved a 31.6% power conversion efficiency, first announced in September. The Fraunhofer researchers used a combination of vapor deposition and wet-chemical deposition to ensure an even deposition of the perovskite layer on the textured silicon surface. “Close industrial cooperation is the next step in establishing this future technology in Europe,” said Professor Andreas Bett, coordinator of the project.

Dec 12, 2024

FHE Group presents thermal battery for solar power storage

Posted by in categories: solar power, sustainability

The French company says its Inelio thermal battery can store solar power in the form of heat for heating and cooling applications, as well as for producing domestic hot water, while maximizing self-consumption. It can reportedly provide a hot water temperature of up to 65 C.

Dec 10, 2024

Generating plausible crystal structures from composition

Posted by in categories: particle physics, robotics/AI, solar power, sustainability

Researchers at the University of Reading and University College London have developed a new artificial intelligence model that can predict how atoms arrange themselves in crystal structures. Called CrystaLLM, the technology works similarly to AI chatbots, by learning the “language” of crystals by studying millions of existing crystal structures. It could lead to faster discovery of new materials for everything from solar panels to computer chips.

Read Full Story.

Dec 7, 2024

The largest project in history, under the ocean: 5,000km and two continents linked by this

Posted by in categories: climatology, habitats, solar power, sustainability

Envision a settlement where the sunlight that beams across Australia buoy on its vast outback powers millions of homes and industries across Southeast Asia. This is how the Australia-Asia PowerLink (AAPowerLink) is being realized: the longest sub-sea cable in the world, linking northern Australia to Singapore, presently is one of the all-time break-through renewable energy developments. By virtue of this mammoth solar farm with its advanced energy transmission technology, this ambitious vision will shape the future energy systems around the world while addressing some critical climate issues.

Taking enormous advantage from its plentiful sunlight, northern Australia houses the world’s biggest Solar Precinct in its Northern Territory gathering between 17–20 GW peak electricity, a size surpassing that of Australia’s largest coal-fired power station.

The project incorporates advanced storage of 36–42 GWh, supplying 800 MW to Darwin and 1.75 GW to Singapore. In addition to reducing emissions and electricity prices for the Darwin region, it creates a renewable energy export marketplace for the region and demonstrates the use of the solar-rich area to meet 15 percent of Singapore’s electricity demand.

Dec 6, 2024

Experiments provide evidence that interaction of light with a hydrocarbon molecule produces strained molecular rings

Posted by in categories: chemistry, solar power, sustainability

When molecules interact with ultraviolet (UV) light, they can change shape quickly, producing strain—stress in a molecule’s chemical structure due to an increase in the molecule’s internal energy. These processes typically take just tens of picoseconds (one millionth of a millionth of a second). Advanced capabilities at X-ray free electron laser (XFEL) facilities now enable scientists to create images of these ultrafast structural changes.

In work appearing in The Journal of Physical Chemistry A, researchers found structural evidence of a strained bicyclic molecule (a molecule consisting of two joined rings) that emerges from the chemical reaction that occurs when a cyclopentadiene molecule absorbs UV light. Cyclopentadiene is a good sample chemical for studying a range of reactions, and these findings have broad implications for chemistry.

Highly strained molecules have a variety of interesting applications in solar energy and pharmaceuticals. However, strain doesn’t typically occur naturally—energy must be added to a molecular system to create the strain. Identifying processes that produce molecules with strained rings is a challenge of broad interest in physical chemistry.

Page 1 of 14512345678Last