Toggle light / dark theme

Quasicrystals can be formed by lightning

Scientists have found a very rare mineral, which they call a dodecagonal quasicrystal, which probably formed when lightning struck near a fallen power line in a sandy region of the United States. The discovery is surprising, because until now experts doubted that such structures could form on Earth in natural conditions.

Quasicrystals are made of atoms arranged in an ordered fashion, but without the periodic repetition of a simple geometric form that is found in normal crystals. They only form in extreme temperature and pressure conditions. Because of their structure, they have magnetic and electric properties that are not found in either crystals or amorphous solids and could prove useful for many applications.


A rock discovered in Nebraska proves that a strong electrical discharge can form these exotic materials that are rarely seen in nature.

Voyager missed it, but now we know Uranus has a fiery secret

For decades, scientists puzzled over why Uranus seemed colder than expected. Now, an international research team led by the University of Houston has solved the mystery: Uranus emits more heat than it gets from the Sun, meaning it still carries internal warmth from its ancient formation. This revelation rewrites what scientists know about the ice giant’s history, strengthens the case for NASA’s upcoming mission, and offers fresh insight into the forces shaping not only other planets, but also Earth’s future climate.

A new study led by University of Houston researchers, in collaboration with planetary scientists worldwide, suggests Uranus does have its own internal heat — an advance that not only informs NASA’s future missions but also deepens scientists’ understanding of planetary systems, including processes that influence Earth’s climate and atmospheric evolution.

The discovery resolves a long-standing scientific mystery about the giant planet, because observational analyses from Voyager 2 in 1986 didn’t suggest the presence of significant internal heat — contradicting scientists’ understanding of how giant planets form and evolve.

Misinformation and distrust in science — with Naomi Oreskes

Find out how organisations like tobacco and fossil fuel companies sell doubt about science, in order to undermine public trust.

You can watch Naomi’s recent talk about the origin of the plate tectonics theory here: • Rethinking the origin of plate tectonics -… and if you sign up as one of our Science Supporters, see the full Q&A here: • Q&A: Rethinking the origin of plate tecton…

Buy Naomi’s book ‘Merchants of Doubt: How a Handful of Scientists Obscured the Truth on Issues from Tobacco Smoke to Global Warming’ here: https://geni.us/orTZL9D

00:00 Introduction.
0:41 Why do bad actors work to create mistrust in science?
2:26 How do bad actors create mistrust in science?
3:24 How does the fossil fuel industry create mistrust?
5:04 How can we rebuild trust in science and government?
7:50 Does it matter who funds science?
11:52 What role does government regulation play in science?
14:01 How does the concept of freedom affect the climate debate?

Naomi Oreskes is Professor of the History of Science and Affiliated Professor of Earth and Planetary Sciences at Harvard University. She has worked on studies of geophysics, climate change and the history of science. She sits on the board of US based not-for-profit organisations the National Center for Science Education and Climate Science Legal Defense Fund. She is a distinguished speaker and has published 10 books, including Science on a Mission and The Big Myth.

The Ri is on Twitter: / ri_science.

Carbon nanotube ‘smart windows’ offer energy savings

Half of the sun’s radiant energy falls outside of the visible spectrum. On a cold day, this extra infrared light provides additional warmth to residential and commercial buildings. On a warm day, it leads to unwanted heating that must be dealt with through energy-intensive climate control methods such as air-conditioning. Visibly transparent “smart windows” that can modulate the transmission of near infrared light offer one potential cost- and energy-saving measure for modern infrastructure. To work towards solving this technological challenge, a multidisciplinary team of researchers at

Ultra-thin materials twist light into optical vortices for faster data transmission

Imagine a whirlpool spinning in a river, or a tornado swirling through the sky. They don’t just spin on the spot: they travel forward while maintaining that spiraling motion inside them. These twisting motions, called vortices, are powerful and organized spirals. Now, imagine light that behaves the same way: a beam of light that spins as it moves forward. This “twisted” light, known as an optical vortex, can carry more information than normal light, opening the door to faster internet and ultra-secure communications.

Carbon nanotube ‘smart windows’ offer energy savings by modulating near-infrared light transmission

Half of the sun’s radiant energy falls outside of the visible spectrum. On a cold day, this extra infrared light provides additional warmth to residential and commercial buildings. On a warm day, it leads to unwanted heating that must be dealt with through energy-intensive climate control methods such as air-conditioning.

/* */