Toggle light / dark theme

Advances in thin-film electrolytes push solid oxide fuel cells forward

Under the threat of climate change and geopolitical tensions related to fossil fuels, the world faces an urgent need to find sustainable and renewable energy solutions. While wind, solar, and hydroelectric power are key renewable energy sources, their output strongly depends on environmental conditions, meaning they are unable to provide a stable electricity supply for modern grids.

Solid oxide fuel cells (SOFCs), on the other hand, represent a promising alternative; these devices produce electricity on demand directly from clean electrochemical reactions involving hydrogen and oxygen.

However, existing SOFC designs still face technical limitations that hinder their widespread adoption for power generation. SOFCs typically rely on bulk ceramic electrolytes and require high operating temperatures, ranging from 600–1,000 °C. This excessive heat not only forces manufacturers to use expensive, high-performance materials, but also leads to earlier component degradation, limiting the cell’s service life and driving up costs.

North Pacific winter storm tracks shifting poleward much faster than predicted

Alaska’s glaciers are melting at an accelerating pace, losing roughly 60 billion tons of ice each year. About 4,000 kilometers to the south, in California and Nevada, records for heat and dryness are being shattered, creating favorable conditions for wildfire events.

One major factor contributing to climate change in both regions is the northward shift of winter storm tracks across the North Pacific Ocean. These storms transport heat and moisture from Earth’s warmer regions toward the pole; when their tracks shift northward, more heat and moisture reach Alaska, while natural ventilation of the southwestern United States is reduced, driving temperatures upward.

In a new study published in Nature, Dr. Rei Chemke of the Weizmann Institute of Science’s Earth and Planetary Sciences Department and Dr. Janni Yuval of Google Research show that the storms’ northward shift is occurring much faster than climate models have predicted. Moreover, using a new metric based on sea-level pressure—a parameter measured consistently for decades—the researchers found that this shift is not part of natural climate variability but rather a clear consequence of climate change.

Emergent Complexity

“milliards” means “billions” btw.

Here is Emergent Garden’s thoughts on emergent complexity. I go through a tour of simple systems that produce unexpected complexity, and try to break down emergence into more general and useful ideas. We talk about snowflakes and ant colonies, cellular automata and universe simulations, and the many weird ideas of Stephen Wolfram. I also offer some advice for creating and encouraging emergent behavior. This video is important to me. Emergence is the most interesting thing in the universe.

~SUPPORT ME~
Scrimba: https://scrimba.com/?via=EmergentGarden.
Patreon: https://www.patreon.com/emergentgarden.
Ko-fi: https://ko-fi.com/emergentgarden.
Twitter: https://twitter.com/max_romana.
Bluesky: https://bsky.app/profile/emergentgarden.bsky.social.

~SOURCES~
Particle Life: https://sandbox-science.com/particle-life.
Universe Sandbox: https://universesandbox.com/
Lego Galaxy: https://www.youtube.com/watch?v=djLyoDmSPF0
Big Bang: https://svs.gsfc.nasa.gov/12656/
Emergence Animation: https://www.pexels.com/video/an-artist-s-illustration-of-art…-25744130/
Ants Solving Maze: https://www.reddit.com/r/Damnthatsinteresting/comments/1hlyv…_maneuver/
Neuron Footage: https://www.youtube.com/watch?v=2TIK9oXc5Wo.
Snowflake Footage: https://www.youtube.com/watch?v=q-PQk2-Po-g.
The Life Engine: https://thelifeengine.net.
Water Molecule Sim: https://twitter.com/EdgarGonzalezGT/status/1877078173910753452
Langton’s Ant Simulator: https://evolvecode.io/turmites/index.html.
Conway’s Game of Life: https://playgameoflife.com/
Recursive Game of Life: https://oimo.io/works/life/
A New Kind of Science: https://www.wolframscience.com/nks/
Stephen Wolfram Podcasts: https://www.youtube.com/watch?v=PdE-waSx-d8&list=PLdwvZsAHiS…9ChTYxtZsD
Complexity, A Guided Tour: https://www.amazon.com/Complexity-Guided-Tour-Melanie-Mitche…atfound-20
Wolfram Hypergraph Simulator: https://met4citizen.github.io/Hypergraph/
Atom Orbital Simulation: https://www.falstad.com/qmatom/
Lego Bonsai Alternate Build: https://www.youtube.com/watch?v=YnuCOrCJojw.
Lego Blocks Made of Legos:
Tornado: https://www.youtube.com/watch?v=LGcGFU_Hi9U
Carl Sagan’s Cosmos: https://archive.org/details/cosmos_1980/COSMOS_01.mp4.
Terry Davis Quote: https://www.youtube.com/watch?v=k0qmkQGqpM8

My Music Guy: https://youtube.com/@acolyte-compositions?si=2P97LlROhNgQYOa
“Deliberate Thought“
Kevin MacLeod (incompetech.com)
Licensed under Creative Commons: By Attribution 3.0
http://creativecommons.org/licenses/by/3.0/

~TIMESTAMPS~

Glacier loss to accelerate, with up to 4,000 disappearing each year by 2050s

Thousands of glaciers will vanish each year in the coming decades, leaving only a fraction standing by the end of the century unless global warming is curbed, a study showed on Monday.

Government action on climate change could determine whether the world loses 2,000 or 4,000 glaciers annually by the middle of the century, according to the research.

A few degrees could be the difference between preserving almost half of the world’s glaciers in 2100—or fewer than 10%.

Why Supersonic Jet Engines Will Power AI Data Centers

⚙️ Q: What makes supersonic engines better than subsonic for ground power generation? A: Supersonic engines designed for 160°F operation at 60,000 ft and Mach 1.7 handle high ground temperatures without requiring water cooling, throttling, or water spray that subsonic engines need to avoid melting in hot conditions.

Deployment Timeline.

📅 Q: When will Boom’s engines start powering AI data centers? A: Boom’s supersonic engines are scheduled to begin providing power to AI customers in 2027, becoming the most tested new jet engine ever before carrying passengers.

Business Model.

💰 Q: How does powering data centers benefit Boom’s supersonic aircraft development? A: The symbiotic relationship creates a financial bridge where engines generate revenue from data center operations before deployment in commercial passenger aircraft, funding the experimental-to-commercial transition.

Environmental Considerations.

Vast freshwater reserves found beneath salinity-stressed coastal Bangladesh

Despite its tropical climate and floodplain location, Bangladesh—one of the world’s most densely populated nations—seasonally does not have enough freshwater, especially in coastal areas. Shallow groundwater is often saline, a problem that may be exacerbated by rising sea levels.

Rainfall is highly seasonal and stored rainwater often runs out by the end of the dry season. And contamination by naturally occurring arsenic deposits and other pollutants farther inland further depletes supplies of potable water, which can run desperately short during annual dry seasons. According to the UN’s Sustainable Development Goals, 41% of Bangladeshis do not have consistent access to safe water.

Hoping to ease the crisis, researchers from Lamont-Doherty Earth Observatory, which is part of the Columbia Climate School, led an exploration for new freshwater sources along the Pusur River in the Ganges-Brahmaputra Delta. They recently published their results in the journal Nature Communications.

More eyes on the skies can help planes reduce climate-warming contrails

Aviation’s climate impact is partly due to contrails—condensation that a plane streaks across the sky when it flies through icy and humid layers of the atmosphere. Contrails trap heat that radiates from the planet’s surface, and while the magnitude of this impact is uncertain, several studies suggest contrails may be responsible for about half of aviation’s climate impact.

Pilots could conceivably reduce their planes’ climate impact by avoiding contrail-prone regions, similarly to making altitude adjustments to avoid turbulence. But to do so requires knowing where in the sky contrails are likely to form.

To make these predictions, scientists are studying images of contrails that have formed in the past. Images taken by geostationary satellites are one of the main tools scientists use to develop contrail identification and avoidance systems.

/* */