Toggle light / dark theme

When it comes to creating images of the earth from above, satellites, drones, planes and spacecraft are what tend to come to mind. But a startup called Near Space Labs is taking a very different approach to taking high-resolution photos from up high.

Near Space Labs is building aircraft that are raised by helium balloons and then rely on air currents to stay up, move around to take pictures from the stratosphere, and eventually glide back down to earth. On the back of significant traction with customers using its images, the startup has now raised $20 million to expand its business.

Bold Capital Partners (a VC firm founded by Peter Diamandis of XPRIZE and Singularity University fame), is leading the Series B round. Strategic backer USAA (the U.S. Automobile Association) is also investing alongside Climate Capital, Gaingels, River Park Ventures, and previous backers Crosslink Capital, Third Sphere, Draper Associates, and others that are not being named. Near Space Labs has now raised over $40 million, including a $13 million Series A in 2021.

Scientists are racing against time to try and create revolutionary, sustainable energy sources (such as solid-state batteries) to combat climate change. However, this race is more like a marathon, as conventional approaches are trial-and-error in nature, typically focusing on testing individual materials and set pathways one by one.

To get us to the finish line faster, researchers at Tohoku University developed a data-driven AI framework that points out potential solid-state electrolyte (SSE) candidates that could be “the one” to create the ideal sustainable energy solution.

This model does not only select optimal candidates, but can also predict how the reaction will occur and why this candidate is a good choice—providing interesting insights into potential mechanisms and giving researchers a huge head start without even stepping foot into the lab.

Researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) have developed a novel artificial intelligence (AI) model inspired by neural oscillations in the brain, with the goal of significantly advancing how machine learning algorithms handle long sequences of data.

AI often struggles with analyzing complex information that unfolds over long periods of time, such as climate trends, biological signals, or financial data. One new type of AI model called “state-space models” has been designed specifically to understand these sequential patterns more effectively. However, existing state-space models often face challenges—they can become unstable or require a significant amount of computational resources when processing long data sequences.

To address these issues, CSAIL researchers T. Konstantin Rusch and Daniela Rus have developed what they call “linear oscillatory state-space models” (LinOSS), which leverage principles of forced harmonic oscillators—a concept deeply rooted in physics and observed in .

Tesla is ramping up production of its Semi trucks to 50,000 units annually by 2026, while enhancing performance, charging infrastructure, and electrification solutions to support the transition from diesel ## ## Questions to inspire discussion ## Production and Delivery.

🏭 Q: When will Tesla Semi production and deliveries begin? A: Tesla Semi customer deliveries will start in 2026, with production ramping throughout the year to reach a goal of 50,000 units/year at the Nevada plant.

🚚 Q: What are the key features of the new Tesla Semi? A: The Tesla Semi offers 500 mile long range and 300 mile standard range options, with improved mirror design, better sight lines, enhanced aerodynamics, and drop glass for easier driver interaction. Technology and Efficiency.

🔋 Q: How does the new HP battery improve the Tesla Semi? A: The new HP battery is cheaper to manufacture, maintains the same range with less battery energy, and achieves over 7% efficiency improvements, creating a positive feedback loop for cost and weight reduction.

⚡ Q: What is the e-PTO feature in the Tesla Semi? A: The electric power takeoff (EPTO) enables support for longer combinations, more trailer equipment, and helps electrify additional pieces of equipment, facilitating broader industry transition to electric solutions. Charging Infrastructure.

🔌 Q: What charging solutions is Tesla developing for the Semi? A: Tesla is building a publicly available charging network with 46 sites along truck routes and in major industrial areas, including stations at truck stops, to ensure low-cost, reliable, and available charging for every semi.

The Eta Aquarids meteor shower, ongoing since late April, reaches its peak during the first week of the month. During the early-morning hours of May 5 and 6, up to dozens of meteors per hour will streak through the sky in the best viewing locations.

Want to know how your actions can help make a difference for our planet? Sign up for the Climate Coach newsletter, in your inbox every Tuesday and Thursday.

Over the past decades, many countries worldwide have been trying to gradually transform their energy systems, with the aim of reducing carbon emissions and mitigating the adverse effects of climate change. Hydrogen and carbon dioxide (CO2) transport networks, infrastructures designed to transport hydrogen gas and captured CO2, could support the shift towards climate-neutral energy systems.

Researchers at Technical University Berlin carried out a study aimed at better understanding the extent to which hydrogen and CO2 could contribute to the future de-carbonization of the European energy system. Their paper, published in Nature Energy, suggests that both these types of networks could play a key role in establishing a sustainable and clean European energy system.

“In our view, we are envisioning a climate-friendly economy which relies as little as possible on and respects socio-economic considerations,” Fabian Hofmann, first author of the paper, told Tech Xplore.

To combat climate change and achieve a climate-neutral industry, carbon emissions must be drastically reduced. A key part of this transition is replacing carbon-based energy carriers with electricity, particularly in transport and industrial applications. However, this shift heavily depends on nickel, a critical material used in batteries and stainless steel.

Comets that have hit Earth have been a mixed bag. Early in Earth’s history, during the solar system’s chaotic beginning, they were likely the source of our planet’s water, ultimately making up about 0.02% of the planet’s mass. (Mars and Venus received a similar fraction.)

Comets brought complex organic molecules and the biosphere, but later posed a threat to the same in cometary collisions. A (or asteroid) likely caused the Tunguska Event in 1908 in Russia, and a comet fragment likely triggered the rapid climate shift of the Younger Dryas 12,800 years ago, with its widespread extinctions.

If such collisions happen here, they likely take place in other solar systems as well. Now three scientists in the United Kingdom have modeled the impacts of an icy cometary collision with an Earth-like, tidally locked terrestrial planet. Such objects are prime candidates in the search for habitable exoplanets outside our solar system.