Toggle light / dark theme

Contemplate a future where tiny, energy-efficient brain-like networks guide autonomous machines—like drones or robots—through complex environments. To make this a reality, scientists are developing ultra-compact communication systems where light, rather than electricity, carries information between nanoscale devices.

In this study, researchers achieved a breakthrough by enabling direct on-chip communication between tiny light-sensing devices called InP nanowire photodiodes on a silicon chip. This means that light can now travel efficiently from one nanoscale component to another, creating a faster and more energy-efficient network. The system proved robust, handling signals with up to 5-bit resolution, which is similar to the information-processing levels in biological neural networks. Remarkably, it operates with minimal energy—just 0.5 microwatts, which is lower than what conventional hardware needs.

S a quadrillionth of a joule!) and allow one emitter to communicate with hundreds of other nodes simultaneously. This efficient, scalable design meets the requirements for mimicking biological neural activity, especially in tasks like autonomous navigation. + In essence, this research moves us closer to creating compact, light-powered neural networks that could one day drive intelligent machines, all while saving space and energy.

Physicists in Japan have developed streamlined formulas to measure quantum entanglement, revealing surprising quantum interactions in nanoscale.

The term “nanoscale” refers to dimensions that are measured in nanometers (nm), with one nanometer equaling one-billionth of a meter. This scale encompasses sizes from approximately 1 to 100 nanometers, where unique physical, chemical, and biological properties emerge that are not present in bulk materials. At the nanoscale, materials exhibit phenomena such as quantum effects and increased surface area to volume ratios, which can significantly alter their optical, electrical, and magnetic behaviors. These characteristics make nanoscale materials highly valuable for a wide range of applications, including electronics, medicine, and materials science.

Researchers at the University of Turku, Finland, have succeeded in producing sensors from single-wall carbon nanotubes that could enable major advances in health care, such as continuous health monitoring. Single-wall carbon nanotubes are nanomaterial consisting of a single atomic layer of graphene.

A long-standing challenge in developing the material has been that the nanotube manufacturing process produces a mix of conductive and semi-conductive nanotubes which differ in their chirality, i.e., in the way the graphene sheet is rolled to form the cylindrical structure of the nanotube. The electrical and chemical properties of nanotubes are largely dependent on their chirality.

Han Li, Collegium Researcher in materials engineering at the University of Turku, has developed methods to separate nanotubes with different chirality. In the current study, published in Physical Chemistry Chemical Physics, the researchers succeeded in distinguishing between two carbon nanotubes with very similar chirality and identifying their typical electrochemical properties.

Harmful microorganisms such as bacteria represent one of the largest threats to human health. Efficient sterilization methods are thus a necessity.

In the journal Angewandte Chemie, a research team has now introduced a novel, sustainable, electrocatalytic method based on electrodes covered with copper oxide nanowires. These generate very strong local electric fields, thereby producing highly alkaline microenvironments that efficiently kill bacteria.

Conventional disinfection methods, such as chlorination, treatment with ozone, hydrogen peroxide oxidation, and irradiation with have disadvantages, including harmful by-products and high energy consumption.

University at Albany researchers at the RNA Institute are pioneering new methods for designing and assembling DNA nanostructures, enhancing their potential for real-world applications in medicine, materials science and data storage.

Their latest findings demonstrate a novel ability to assemble these structures without the need for and controlled cooling. They also demonstrate successful assembly of unconventional “buffer” substances including nickel. These developments, published in the journal Science Advances, unlock new possibilities in DNA nanotechnology.

DNA is most commonly recognized for its role in storing genetic information. Composed of base pairs that can easily be manipulated, DNA is also an excellent material for constructing nanoscale objects. By “programming” the base pairs that make up DNA molecules, scientists can create precise structures as small as a few nanometers that can be engineered into shapes with intricate architectures.

Lung cancer is the major cause of cancer death worldwide. Cancer immunotherapy has been introduced as a promising and effective treatment that can improve the immune system’s ability to eliminate cancer cells and help establish immunological memory. Nanoparticles can contribute to the rapidly evolving field of immunotherapy by simultaneously delivering a variety of immunological agents to the target site and tumor microenvironment. Nano drug delivery systems can precisely target biological pathways and be implemented to reprogram or regulate immune responses. Numerous investigations have been conducted to employ different types of nanoparticles for immunotherapy of lung cancer. Nano-based immunotherapy adds a strong tool to the diverse collection of cancer therapies. This review briefly summarizes the remarkable potential opportunities for nanoparticles in lung cancer immunotherapy and its challenges.

Humankind’s quest to defeat cancer continues by developing targeted treatments. Among the frequently used cancer treatments with significant improvements are chemotherapy, radiation therapy, surgery, and combinations of them. However, these strategies have various limitations; for instance, although surgery offers the best outcome for cancers detected at early stages, this approach often falls short for cancers detected at late stages which have already spread throughout the body. Furthermore, chemotherapy has low specificity, drug-induced side effects, and drug resistance, and has shown higher cancer relapse rates similar to radiation therapy (Velpurisiva et al., 2017; Doroudian et al., 2020; Niloy et al., 2021; Anconina et al., 2022; Hosseinkazemi et al., 2022). As a result, researchers were encouraged to make use of the human body’s own defense system as a tool to fight cancer.

Getting mRNA into the brain could allow scientists to instruct brain cells to produce therapeutic proteins that can help treat or prevent disease by replacing missing proteins, reducing harmful ones, or activating the body’s defenses.

The research team designed and tested a library of lipids to optimize their ability to cross the blood-brain barrier. Through a series of structural and functional analyses, they identified a lead formulation, termed MK16 BLNP, that exhibited significantly higher mRNA delivery efficiency than existing lipid nanoparticles approved by the Food and Drug Administration (FDA). This system takes advantage of natural transport mechanisms within the blood-brain barrier, including caveolae-and γ-secretase-mediated transcytosis, to move nanoparticles across the barrier, say the investigators.

In studies using mouse models of disease, the BLNP platform successfully delivered therapeutic mRNAs to the brain, demonstrating its potential for clinical application.


Scientists have developed a lipid nanoparticle system capable of delivering messenger RNA (mRNA) to the brain via intravenous injection, a challenge that has long been limited by the protective nature of the blood-brain barrier.

The findings, in mouse models and isolated human brain tissue, were published in Nature Materials. They demonstrate the potential of this technology to pave the way for future treatments for a wide range of conditions such as Alzheimer’s disease, amyotrophic lateral sclerosis, brain cancer, and drug addiction.

The blood-brain barrier serves as a protective shield, preventing many substances—including potentially beneficial therapies—from reaching the brain. While previous research introduced a platform for transporting large biomolecules such as proteins and oligonucleotides into the central nervous system, this new study focuses on a different approach: using specially designed lipid nanoparticles to transport mRNA across the barrier.

A research team led by Prof. Jiang Changlong from the Hefei Institutes of Physical Science of the Chinese Academy of Sciences has developed an innovative dual-mode sensing platform using upconversion nanoparticles (UCNPs). This platform integrates fluorescence and colorimetric methods, offering a highly sensitive and low-detection-limit solution for bilirubin detection in complex biological samples.

The findings, published in Analytical Chemistry, offer a new technological approach for the early diagnosis of jaundice.

Jaundice is a critical health issue in neonates, affecting 60% of newborns and contributing to early neonatal mortality. Elevated free bilirubin levels indicate jaundice, with healthy levels ranging from 1.7 μM to 10.2 μM in healthy individuals. Concentrations below 32 μM typically don’t show classic symptoms. Rapid and accurate detection of bilirubin in neonates is critical.

The ultrafast dynamics and interactions of electrons in molecules and solids have long remained hidden from direct observation. For some time now, it has been possible to study these quantum-physical processes—for example, during chemical reactions, the conversion of sunlight into electricity in solar cells and elementary processes in quantum computers—in real time with a temporal resolution of a few femtoseconds (quadrillionths of a second) using two-dimensional electronic spectroscopy (2DES).

However, this technique is highly complex. Consequently, it has only been employed by a handful of research groups worldwide to date. Now a German-Italian team led by Prof. Dr. Christoph Lienau from the University of Oldenburg has discovered a way to significantly simplify the experimental implementation of this procedure. “We hope that 2DES will go from being a methodology for experts to a tool that can be widely used,” explains Lienau.

Two doctoral students from Lienau’s Ultrafast Nano-Optics research group, Daniel Timmer and Daniel Lünemann, played a key role in the discovery of the new method. The team has now published a paper in Optica describing the procedure.