БЛОГ

Archive for the ‘nanotechnology’ category

Nov 18, 2024

Machine learning and supercomputer simulations predict interactions between gold nanoparticles and blood proteins

Posted by in categories: biotech/medical, chemistry, nanotechnology, robotics/AI, supercomputing

Researchers in the Nanoscience Center at the University of Jyväskylä, Finland, have used machine learning and supercomputer simulations to investigate how tiny gold nanoparticles bind to blood proteins. The studies discovered that favorable nanoparticle-protein interactions can be predicted from machine learning models that are trained from atom-scale molecular dynamics simulations. The new methodology opens ways to simulate the efficacy of gold nanoparticles as targeted drug delivery systems in precision nanomedicine.

Hybrid nanostructures between biomolecules and inorganic nanomaterials constitute a largely unexplored field of research, with the potential for novel applications in bioimaging, biosensing, and nanomedicine. Developing such applications relies critically on understanding the dynamical properties of the nano–bio interface.

Modeling the properties of the nano-bio interface is demanding since the important processes such as electronic charge transfer, or restructuring of the biomolecule surface can take place in a wide range of length and time scales, and the atomistic simulations need to be run in the appropriate aqueous environment.

Nov 18, 2024

Intelciety: Intelligent Society. Are we up for the challenge?. The book “Intelciety. Intelligent Society. Are We Ready for the Challenge?” explores th

Posted by in categories: biotech/medical, nanotechnology, robotics/AI

Join us at.

#AI #ExponentialTechnologies


The book “Intelciety. Intelligent Society. Are We Ready for the Challenge?” explores the profound changes that artificial intelligence (AI) and other emerging technologies are causing in modern society. Vicente Ferreira da Silva addresses how these technologies are transforming various fields, from medicine and biotechnology to robotics and nanotechnology, and questions whether we are truly prepared to deal with these advances.

Nov 16, 2024

The Secrets of Life’s Most Essential Molecule: Scientists Unravel Water’s Mysterious Anomalies

Posted by in categories: biotech/medical, chemistry, nanotechnology, neuroscience

Water, a molecule essential for life, exhibits unusual properties—referred to as anomalies—that define its behavior. Despite extensive study, many mysteries remain about the molecular mechanisms underlying these anomalies that make water unique. Deciphering and replicating this distinctive behavior across various temperature ranges remains a significant challenge for the scientific community.

Now, a study presents a new theoretical model capable of overcoming the limitations of previous methodologies to understand how water behaves in extreme conditions. The paper, featured on the cover of The Journal of Chemical Physics, is led by Giancarlo Franzese and Luis Enrique Coronas, from the Faculty of Physics and the Institute of Nanoscience and Nanotechnology of the University of Barcelona (IN2UB).

The study not only broadens our understanding of the physics of water, but also has implications for technology, biology and biomedicine, in particular for addressing the treatment of neurodegenerative diseases and the development of advanced biotechnologies.

Nov 15, 2024

UChicago scientists develop new nanomedicine approach to improve cancer treatment

Posted by in categories: biotech/medical, nanotechnology

Researchers at the University of Chicago Medicine Comprehensive Cancer Center have developed a nanomedicine that increases the penetration and accumulation of chemotherapy drugs in tumor tissues and effectively kills cancer cells in mice.

The study, published in Science Advances, addresses a…


Research effectively used nanoparticles to deliver chemo drugs directly to tumors in mice.

Continue reading “UChicago scientists develop new nanomedicine approach to improve cancer treatment” »

Nov 14, 2024

Diamond-cooled GPUs are coming soon — startup claims 20C temp reduction, 25% more overclocking headroom as it seeks US govt funding for diamond-encrusted chip cooling solutions

Posted by in categories: government, military, nanotechnology, robotics/AI, space

Akash Systems has signed a non-binding preliminary memorandum of terms with the U.S. Department of Commerce for $18.2 million in direct funding and $50 million in federal and state tax credits through the CHIPS Act. Although this isn’t yet a binding contract that will give the company the promised funds, it’s an important first step in the negotiation process for the Oakland-based startup, which shows that both the company and the U.S. government are gradually moving towards a formal agreement. According to Akash Systems (h/t Axios), it will use the funds to ramp up its operations for producing diamond-cooled semiconductors for AI, data centers, space applications, and defense markets.

Diamond-cooling technology goes deeper than just thermal paste with nano-diamond technology. For example, some use synthetic diamonds as the chip substrate, utilizing the material’s thermal conductivity to more efficiently move heat away from the processor. So, let’s look closer at Akash’s solution.

Nov 14, 2024

Layered paper 3D printers: Full color, durable objects at a fraction of the cost

Posted by in categories: computing, engineering, mobile phones, nanotechnology, quantum physics

I believe that nanotechnology could be imbedded into paper so a paper computer could give one the same information as a smartphone but at pennies per smartphone. Right now we can print out 3D copies of paper phones and other things next would be nanotechnology made of paper with quantum mechanical engineering.


Irish company Mcor’s unique paper-based 3D printers make some very compelling arguments. For starters, instead of expensive plastics, they build objects out of cut-and-glued sheets of standard 80 GSM office paper. That means printed objects come out at between 10–20 percent of the price of other 3D prints, and with none of the toxic fumes or solvent dips that some other processes require.

Secondly, because it’s standard paper, you can print onto it in full color before it’s cut and assembled, giving you a high quality, high resolution color “skin” all over your final object. Additionally, if the standard hard-glued object texture isn’t good enough, you can dip the final print in solid glue, to make it extra durable and strong enough to be drilled and tapped, or in a flexible outer coating that enables moving parts — if you don’t mind losing a little of your object’s precision shape.

Continue reading “Layered paper 3D printers: Full color, durable objects at a fraction of the cost” »

Nov 13, 2024

Researchers demonstrate universal control of a quantum dot-based system with four singlet-triplet qubits

Posted by in categories: computing, nanotechnology, quantum physics

Being able to precisely manipulate interacting spins in quantum systems is of key importance for the development of reliable and highly performing quantum computers. This has proven to be particularly challenging for nanoscale systems with many spins that are based on quantum dots (i.e., tiny semiconductor devices).

Nov 12, 2024

Low-cost method removes micro- and nanoplastics from water

Posted by in category: nanotechnology

Researchers at the University of São Paulo (USP) in Brazil have developed a novel nanotechnology-based solution for the removal of micro-and nanoplastics from water. Their research is published in the journal Micron.

Nov 11, 2024

Information Flow in Molecular Machines

Posted by in categories: biological, chemistry, engineering, nanotechnology

A theoretical model shows that exchange of information plays a key role in the molecular machines found in biological cells.

Molecular machines perform mechanical functions in cells such as locomotion and chemical assembly, but these “tiny engines” don’t operate under the same thermodynamic design principles as more traditional engines. A new theoretical model relates molecular-scale heat engines to information engines, which are systems that use information to generate work, like the famous “Maxwell’s demon” [1]. The results suggest that a flow of information lies at the heart of molecular machines and of larger heat engines such as thermoelectric devices.

The prototypical engine is a steam engine, in which work is produced by a fluid exposed to a cycle of hot and cold temperatures. But there are other engine designs, such as the bipartite engine, which has two separate parts held at different temperatures. This design is similar to that of some molecular machines, such as the kinesin motor, which carries “molecular cargo” across biological cells. “Bipartite heat engines are common in biology and engineering, but they really haven’t been studied through a thermodynamics lens,” says Matthew Leighton from Simon Fraser University (SFU) in Canada. He and his colleagues have now analyzed bipartite heat engines in a way that reveals a connection to information engines.

Nov 10, 2024

Move Over Plastics: Revolutionary Soft, Sustainable Material Set To Transform Medical Devices and Wearable Tech

Posted by in categories: biotech/medical, computing, nanotechnology, wearables

Step aside, hard and rigid materials — a new soft, sustainable electroactive material is here, ready to unlock new possibilities for medical devices, wearable technology, and human-computer interfaces.

Using peptides and a snippet of the large molecules in plastics, Northwestern University materials scientists have developed materials made of tiny, flexible nano-sized ribbons that can be charged just like a battery to store energy or record digital information. Highly energy efficient, biocompatible, and made from sustainable materials, the systems could give rise to new types of ultralight electronic devices while reducing the environmental impact of electronic manufacturing and disposal.

The study was recently published in the journal Nature.

Page 1 of 30712345678Last