БЛОГ

Archive for the ‘biological’ category

Jan 31, 2024

Harnessing Native Microbes for Green Roof Soil Health

Posted by in categories: biological, health

In this urban rooftop setting, we saw more diversity in the fungal communities of the inoculated soil,” said Dr. Paul Metzler. “The long-term and consistent effects of the inoculum were quite surprising, as it’s not necessarily something you would expect when working with such small microorganisms.


How can urban rooftops, also known as green roofs, be improved to better help the environment? This is what a recent study published in New Phytologist hopes to address as a team of researchers led by Dartmouth College investigated how the right amount of soil microbes on urban rooftops could be used to strengthen urban rooftops. Traditionally, such rooftops use less-than-ideal methods that result in their positive environmental impact reducing over time, including the use of non-native plants in infertile soil. This study holds the potential to help scientists, city planners, and the public better understand the positive environmental impacts of urban rooftops.

For the study, the researchers built their own green roof in Chicago using locally obtained mycorrhizal fungi into the soil to produce an inoculation effect. Studies have shown that mycorrhizal fungi enhance plant life by trading much-needed nutrients to the plants for plant sugar. Over the next two years, the team actively managed the mycorrhizal fungi communities to ascertain their impact on the urban rooftop soil communities, whereas urban rooftops are traditionally passively managed. In the end, the researchers not only found that mycorrhizal fungi provide more robust and diverse soil communities, but they also found that active management was the ideal method for ensuring the mycorrhizal fungi maintain their development, and even accelerates it.

Continue reading “Harnessing Native Microbes for Green Roof Soil Health” »

Jan 30, 2024

Scientists manufacture a surface that has virucidal properties but does not use any chemicals

Posted by in categories: biological, chemistry

A team of researchers from the URV and the RMIT University (Australia) has designed and manufactured a surface that uses mechanical means to mitigate the infectious potential of viruses. Made of silicon, the artificial surface consists of a series of tiny spikes that damage the structure of viruses when they come into contact with it. The work is published in the journal ACS Nano.

The research has revealed how these processes work and that they are 96% effective. Using this technology in environments in which there is potentially dangerous biological material would make laboratories easier to control and safer for the professionals who work there.

Spike the viruses to kill them. This seemingly unsophisticated concept requires considerable technical expertise and has one great advantage: a high virucidal potential that does not require the use of chemicals. The process of making the virucidal surfaces starts with a smooth metal plate, which is bombarded with ions to strategically remove material.

Jan 29, 2024

1.6-billion-year-old Fossils Push Back Origin of Multicellular Life by Tens of Millions of Years

Posted by in category: biological

The study shows that analyzing ancient organisms can help unravel the evolutionary history of life on Earth, Craig said.

“Positively identifying any fossil over a billion years old is inherently challenging. For example, the oldest dinosaur fossils are only about 250 million years old, and the ones in this study are almost seven times older,” he said. “That’s why research such as this is exceptionally difficult, but highly rewarding, and when conclusions such as the ones in this study can be reached with high confidence, it represents a significant discovery.”

Jan 28, 2024

Biohybrid robot makes sharp rotations with lab-grown muscles

Posted by in categories: biological, robotics/AI

Compared to robots, human bodies are flexible, capable of fine movements, and can convert energy efficiently into movement. Drawing inspiration from human gait, researchers from Japan crafted a two-legged biohybrid robot by combining muscle tissues and artificial materials. Publishing on January 26 in the journal Matter, this method allows the robot to walk and pivot.

Research on biohybrid robots, which are a fusion of biology and mechanics, is recently attracting attention as a new field of robotics featuring biological function. Using muscle as actuators allows us to build a compact robot and achieve efficient, silent movements with a soft touch.

Jan 28, 2024

Quantum Breakthrough: Unveiling the Mysteries of Electron Tunneling

Posted by in categories: biological, chemistry, computing, quantum physics

Tunneling is a fundamental process in quantum mechanics, involving the ability of a wave packet to cross an energy barrier that would be impossible to overcome by classical means. At the atomic level, this tunneling phenomenon significantly influences molecular biology. It aids in speeding up enzyme reactions, causes spontaneous DNA mutations, and initiates the sequences of events that lead to the sense of smell.

Photoelectron tunneling is a key process in light-induced chemical reactions, charge and energy transfer, and radiation emission. The size of optoelectronic chips and other devices has been close to the sub-nanometer atomic scale, and the quantum tunneling effects between different channels would be significantly enhanced.

Jan 28, 2024

On computational models of theory of mind and the imitative reinforcement learning in spiking neural networks

Posted by in categories: biological, robotics/AI

Gorgan Mohammadi, A., Ganjtabesh, M. Sci Rep 14, 1945 (2024). https://doi.org/10.1038/s41598-024-52299-7

Download citation.

Jan 26, 2024

Scientists design a two-legged robot powered by muscle tissue

Posted by in categories: biological, robotics/AI

Compared to robots, human bodies are flexible, capable of fine movements, and can convert energy efficiently into movement. Drawing inspiration from human gait, researchers from Japan crafted a two-legged biohybrid robot by combining muscle tissues and artificial materials. Published on January 26 in the journal Matter, this method allows the robot to walk and pivot.

“Research on biohybrid robots, which are a fusion of biology and mechanics, is recently attracting attention as a new field of robotics featuring ,” says corresponding author Shoji Takeuchi of the University of Tokyo, Japan. “Using muscle as actuators allows us to build a compact and achieve efficient, silent movements with a soft touch.”

Continue reading “Scientists design a two-legged robot powered by muscle tissue” »

Jan 26, 2024

New Fuel Cell Harvests Energy from Microbes in Soil to Power Sensors, Communications

Posted by in categories: biological, chemistry, food, sustainability

A Northwestern University-led team of researchers has developed a new fuel cell that harvests energy from microbes living in dirt.

About the size of a standard paperback book, the completely soil-powered technology could fuel underground sensors used in precision agriculture and green infrastructure. This potentially could offer a sustainable, renewable alternative to batteries, which hold toxic, flammable chemicals that leach into the ground, are fraught with conflict-filled supply chains and contribute to the ever-growing problem of electronic waste.

To test the new fuel cell, the researchers used it to power sensors measuring soil moisture and detecting touch, a capability that could be valuable for tracking passing animals. To enable wireless communications, the researchers also equipped the soil-powered sensor with a tiny antenna to transmit data to a neighboring base station by reflecting existing radio frequency signals.

Jan 25, 2024

Emergence of periodic circumferential actin cables from the anisotropic fusion of actin nanoclusters during tubulogenesis

Posted by in category: biological

Periodic circumferential cytoskeletons support biological tube formation. Here, the authors show that self-assembled actin nanoclusters undergo biased fusion and develop into periodic cables in response to the membrane anisotropy of the expanding Drosophila tracheal tube.

Jan 24, 2024

Study offers new insights into understanding and controlling tunneling dynamics in complex molecules

Posted by in categories: biological, chemistry, computing, quantum physics

Tunneling is one of most fundamental processes in quantum mechanics, where the wave packet could traverse a classically insurmountable energy barrier with a certain probability.

On the , effects play an important role in , such as accelerating enzyme catalysis, prompting spontaneous mutations in DNA and triggering olfactory signaling cascades.

Photoelectron tunneling is a key process in light-induced , charge and energy transfer and radiation emission. The size of optoelectronic chips and other devices has been close to the sub-nanometer atomic scale, and the quantum tunneling effects between different channels would be significantly enhanced.

Page 1 of 19112345678Last