Toggle light / dark theme

Glowing Green: A Quantitative Analysis of Photoluminescence in Six North American Bat Species

WhatsApp is rolling out passkey-encrypted backups for iOS and Android devices, enabling users to encrypt their chat history using their fingerprint, face, or a screen lock code.

Passkeys are a passwordless authentication method that allows users to sign in using biometrics (such as face recognition or fingerprint), PINs, or security patterns instead of traditional passwords. They enable logging into websites, online services, or apps without needing to remember complex passwords or use a password manager.

When creating a passkey, your device generates a unique cryptographic key pair consisting of a private key stored on the device and a public key sent to the website or app. Because of this, passkeys provide significantly improved security over regular credentials, seeing that they can’t be stolen in data breaches because the private key never leaves your device.

Qilin Ransomware Combines Linux Payload With BYOVD Exploit in Hybrid Attack

To sidestep detection, the attack chain involves the execution of PowerShell commands to disable AMSI, turn off TLS certificate validation, and enable Restricted Admin, in addition to running tools such as dark-kill and HRSword to terminate security software. Also deployed on the host are Cobalt Strike and SystemBC for persistent remote access.

The infection culminates with the launch of the Qilin ransomware, which encrypts files and drops a ransom note in each encrypted folder, but not before wiping event logs and deleting all shadow copies maintained by the Windows Volume Shadow Copy Service (VSS).

The findings coincide with the discovery of a sophisticated Qilin attack that deployed their Linux ransomware variant on Windows systems and combined it with legitimate IT tools and the bring your own vulnerable driver (BYOVD) technique to bypass security barriers.

Optical system achieves terabit-per-second capacity and integrates quantum cryptography for long-term security

The artificial intelligence (AI) boom has created unprecedented demand for data traffic. But the infrastructure needed to support it faces mounting challenges. AI data centers must deliver faster, more reliable communication than ever before, while also confronting their soaring electricity use and a looming quantum security threat, which could one day break today’s encryption methods.

To address these challenges, a recent study published in Advanced Photonics proposes a quantum-secured architecture that involves minimal digital signal processing (DSP) consumption and meets all the stringent requirements for AI-driven data center optical interconnect (AI–DCI) scenarios. This system enables data to move at terabit-per-second speeds with while defending against future quantum threats.

“Our work paves the way for the next generation of secure, scalable, and cost-efficient optical interconnects, protecting AI-driven data centers against quantum security threats while meeting the high demands of modern data-driven applications,” the researchers state in their paper.

Scientists create a novel hydrogel for unclonable security tags

Encryption technologies are vital in today’s digital landscape to protect sensitive information from hackers and prevent fraud. While cutting-edge encryption has been developed for data, sophisticated protection for physical objects such as high-value products, access cards and documents has lagged behind until now.

Scientists have now developed a new hydrogel that acts as an unclonable physical tag. The work is published in the journal Advanced Materials.

Physical items are easily copied or faked because their built-in security tags are often weak or simple to clone. To solve this security gap, a team of researchers from China first mixed two chemicals together: polypyrrole, which conducts electricity; and polystyrene sulfonate, a flexible polymer. The result was a soft, conductive, jelly-like substance.

Streamlined method to directly generate photons in optical fiber could secure future quantum internet

With the rise of quantum computers, the security of our existing communication systems is at risk. Quantum computers will be able to break many of the encryption methods used in current communication systems. To counter this, scientists are developing quantum communication systems, which utilize quantum mechanics to offer stronger security. A crucial building block of these systems is a single-photon source: a device that generates only one light particle at a time.

These photons, carrying quantum information, are then sent through optical fibers. For to work, it is essential that single photons are injected into optical fibers with extremely low loss.

In conventional systems, single-photon emitters, like and rare-earth (RE) element ions, are placed outside the fiber. These photons then must be guided to enter the fiber. However, not all photons make it into the fibers, causing high transmission loss. For practical quantum communication systems, it is necessary to achieve a high-coupling and channeling efficiency between the and the emitter.

Nobel Prize in physics awarded for ultracold electronics research that launched a quantum technology

Quantum mechanics describes the weird behavior of microscopic particles. Using quantum systems to perform computation promises to allow researchers to solve problems in areas from chemistry to cryptography that have so many possible solutions that they are beyond the capabilities of even the most powerful nonquantum computers possible.

Quantum computing depends on researchers developing practical quantum technologies. Superconducting electrical circuits are a promising technology, but not so long ago it was unclear whether they even showed . The 2025 Nobel Prize in physics was awarded to three scientists for their work demonstrating that quantum effects persist even in large electrical circuits, which has enabled the development of practical quantum technologies.

I’m a physicist who studies superconducting circuits for quantum computing and other uses. The work in my field stems from the groundbreaking research the Nobel laureates conducted.

The world’s most sensitive computer code is vulnerable to attack. A new encryption method can help

Nowadays data breaches aren’t rare shocks—they’re a weekly drumbeat. From leaked customer records to stolen source code, our digital lives keep spilling into the open.

Git services are especially vulnerable to cybersecurity threats. These are online hosting platforms that are widely used in the IT industry to collaboratively develop software, and are home to most of the world’s computer code.

Just last week, hackers reportedly stole about 570 gigabytes of data from a git service called GitLab. The stolen data was associated with major companies such as IBM and Siemens, as well as United States government organizations.

Quantum Tunneling Experiments Earn Team The Nobel Prize in Physics

Briton John Clarke, Frenchman Michel Devoret and American John Martinis won the Nobel Prize in Physics on Tuesday for putting quantum mechanics into action and enabling the development of all kinds of digital technology from cellphones to a new generation of computers.

The Nobel jury noted that their work had “provided opportunities for developing the next generation of quantum technology, including quantum cryptography, quantum computers and quantum sensors”

Quantum mechanics describes how differently things work on incredibly small scales.

2025 Nobel Prize in Physics Peer Review

Introduction.

Grounded in the scientific method, it critically examines the work’s methodology, empirical validity, broader implications, and opportunities for advancement, aiming to foster deeper understanding and iterative progress in quantum technologies. ## Executive Summary.

This work, based on experiments conducted in 1984–1985, addresses a fundamental question in quantum physics: the scale at which quantum effects persist in macroscopic systems.

By engineering a Josephson junction-based circuit where billions of Cooper pairs behave collectively as a single quantum entity, the laureates provided empirical evidence that quantum phenomena like tunneling through energy barriers and discrete energy levels can manifest in human-scale devices.

This breakthrough bridges microscopic quantum mechanics with macroscopic engineering, laying foundational groundwork for advancements in quantum technologies such as quantum computing, cryptography, and sensors.

Overall strengths include rigorous experimental validation and profound implications for quantum information science, though gaps exist in scalability to room-temperature applications and full mitigation of environmental decoherence.

Framed within the broader context, this award highlights the enduring evolution of quantum mechanics from theoretical curiosity to practical innovation, building on prior Nobel-recognized discoveries like the Josephson effect (1973) and superconductivity mechanisms (1972).

Signal adds new cryptographic defense against quantum attacks

Signal announced the introduction of Sparse Post-Quantum Ratchet (SPQR), a new cryptographic component designed to withstand quantum computing threats.

SPQR will serve as an advanced mechanism that continuously updates the encryption keys used in conversations and discarding the old ones.

Signal is a cross-platform, end-to-end encrypted messaging and calling app managed by the non-profit Signal Foundation, with an estimated monthly active user base of up to 100 million.

/* */