What can a newborn planet teach astronomers about planetary formation and evolution? This is what a recent study published in Astronomy & Astrophysics | Space

Unmanned aerial vehicles (UAVs), commonly known as drones, are now widely used worldwide to tackle various real-world tasks, including filming videos for various purposes, monitoring crops or other environments from above, assessing disaster zones, and conducting military operations. Despite their widespread use, most existing drones either need to be fully or partly operated by human agents.
In addition, many drones are unable to navigate cluttered, crowded or unknown environments without colliding with nearby objects. Those that can navigate these environments typically rely on expensive or bulky components, such as advanced sensors, graphics processing units (GPUs) or wireless communication systems.
Researchers at Shanghai Jiao Tong University have recently introduced a new insect-inspired approach that could enable teams of multiple drones to autonomously navigate complex environments while moving at high speed. Their proposed approach, introduced in a paper published in Nature Machine Intelligence, relies on both a deep learning algorithm and core physics principles.
Radioactive decay is a fundamental process in nature by which an unstable atomic nucleus loses energy by radiation. Studying nuclear decay modes is crucial for understanding properties of atomic nuclei. In particular, exotic decay modes like proton emission provide essential spectroscopic tools for probing the structure of nuclei far from the valley of stability—the region containing stable nuclei on the nuclear chart.
Astronomers may have caught a still-forming planet in action, carving out an intricate pattern in the gas and dust that surrounds its young host star. Using ESO’s Very Large Telescope (VLT), they observed a planetary disk with prominent spiral arms, finding clear signs of a planet nestled in its inner regions. This is the first time astronomers have detected a planet candidate embedded inside a disk spiral.
“We will never witness the formation of Earth, but here, around a young star 440 light-years away, we may be watching a planet come into existence in real time,” says Francesco Maio, a doctoral researcher at the University of Florence, Italy, and lead author of this study, published in Astronomy & Astrophysics.
The potential planet-in-the-making was detected around the star HD 135344B, within a disk of gas and dust around it called a protoplanetary disk. The budding planet is estimated to be twice the size of Jupiter and as far from its host star as Neptune is from the sun. It has been observed shaping its surroundings within the protoplanetary disk as it grows into a fully formed planet.
That implies the radio wave blasts of CHIME J1634+44 are being generated in a way that is unique for this dead star.
What is also weird about these pulses is the fact that they arrive in pairs, but only when the dead star in the CHIME J1634+44 binary has spun several times without emitting a burst.
“The time between pulse pairs seems to follow a choreographed pattern,” team member and ASTRON astronomer Harish Vedantham said in a statement. “We think the pattern holds crucial information about how the companion triggers the white dwarf to emit radio waves.
Physicists have detected the biggest ever merger of colliding black holes. The discovery has major implications for researchers’ understanding of how such bodies grow in the Universe.
“It’s super exciting,” says Priyamvada Natarajan, a theoretical astrophysicist at Yale University in New Haven, Connecticut, who was not involved in the research. The merger was between black holes with masses too big for physicists to easily explain. “We’re seeing these forbidden high-mass black holes,” she says.
The discovery was made by the Laser Interferometer Gravitational-Wave Observatory (LIGO), a facility involving two detectors in the United States. It comes at a time when US funding for gravitational-wave detection faces devastating cuts. The results, released as a preprint on the arXiv server1, were presented at the GR-Amaldi gravitational-waves meeting in Glasgow, UK, on 14 July.
In the Voltaire Lecture 2025, Professor Anil Seth will set out an approach to understanding consciousness which, rather than trying to solve the mystery head-on, tries to dissolve it by building explanatory bridges from physics and biology to experience and function. In this view, conscious experiences of the world around us, and of being a ‘self’ within that world, can be understood in terms of perceptual predictions that are deeply rooted in a fundamental biological imperative – the desire to stay alive.
At this event, Professor Seth will explore how widely distributed beyond human beings consciousness may be, with a particular focus on AI. He will consider whether consciousness might depend not just on ‘information processing’, but on properties unique to living, biological organisms, before ending with an exploration of the ethical implications of an artificial intelligence that is either actually conscious – or can convincingly pretend to be.