Theories must stand up to practical testing, and this is especially true in physics. Researchers from Johannes Gutenberg University Mainz (JGU), Texas A&M University, Brookhaven National Laboratory, the University of Surrey in the U.K. and Michigan State University have achieved such a milestone: They were able to experimentally demonstrate for the first time that the ratio method can be used to study atomic nuclei, and in particular unstable halo nuclei—thus underscoring the importance of this new reaction observable. The team published their results on May 28, 2025, in Physical Review Letters.
Category: physics
Physicists at the University of Liège have succeeded in sculpting the surface of water by exploiting surface tension. Using 3D printing of closely spaced spines, they have combined menisci to create programmed liquid reliefs, capable of guiding particles under the action of gravity alone. This is a promising advance for microscopic transport and sorting, as well as marine pollution control. The research is published in the journal Nature Communications.
Have you ever tried tilting a liquid in a glass? It’s completely impossible. If you tilt the glass, the surface of the liquid will automatically return to the horizontal … except for a small—barely visible—curvature that forms near the edge of the glass. This curvature is called a meniscus. And this meniscus is due to capillarity, a force acting on a millimeter scale and resulting from the surface tension of the liquid.
What would happen if we could create lots of little menisci over a large surface? What if these small reliefs could add up to form slopes, valleys, or even entire landscapes … liquid? This is exactly what scientists from the GRASP laboratory at the University of Liège, in collaboration with Brown University (U.S.), have succeeded in doing.
Please consider joining my Substack at https://rupertsheldrake.substack.com.
Does Nature Obey Laws? | Sheldrake-Vernon Dialogue 95.
The conviction that the natural world is obedient, adhering to laws, is a widespread assumption of modern science. But where did this idea originate and what beliefs does it imply? In this episode of the Sheldrake-Vernon Dialogues, Rupert Sheldrake and Mark Vernon discuss the impact on science of the Elizabethan lawyer, Francis Bacon. His New Instrument of Thought, or Novum Organum, put laws at the centre of science and was intended as an upgrade on assumptions developed by Aristotle. But does the existence of mind-like laws of nature, somehow acting on otherwise mindless matter, even make sense? What difference is made by insights subsequent to Baconian philosophy, such as the discovery of evolution or the sense that the natural world is not machine-like but behaves like an organism? Could the laws of nature be more like habits? And what about the existence of miracles, the purposes of organisms, and the extraordinary fecundity of creativity?
—
Dr Rupert Sheldrake, PhD, is a biologist and author best known for his hypothesis of morphic resonance. At Cambridge University, as a Fellow of Clare College, he was Director of Studies in biochemistry and cell biology. As the Rosenheim Research Fellow of the Royal Society, he carried out research on the development of plants and the ageing of cells, and together with Philip Rubery discovered the mechanism of polar auxin transport. In India, he was Principal Plant Physiologist at the International Crops Research Institute for the Semi-Arid Tropics, where he helped develop new cropping systems now widely used by farmers. He is the author of more than 100 papers in peer-reviewed journals and his research contributions have been widely recognized by the academic community, earning him a notable h-index for numerous citations. On ResearchGate his Research Interest Score puts him among the top 4% of scientists.
https://www.sheldrake.org/about-rupert-sheldrake?svd=95
—
An Oxford-led team simulation just brought one of physics’ weirdest predictions to life.
Whether we are simply characters in an advanced virtual world is a much-debated theory, challenging previous thinking about the universe and our existence.
The possibility that the entire universe is informational in nature and resembles a computational process is a popular theory among a number of well-known figures, including Elon Musk. The thinking comes from within a branch of science known as information physics, which suggests physical reality is actually made up of structured information.
In an article published in AIP Advances and included in the journal’s “Editor’s Picks,” a physicist from the University of Portsmouth, Dr. Melvin Vopson, presents findings which indicate that gravity or gravitational force is the result of a computational process within the universe.
Back in 2019, the Event Horizon Telescope (EHT) team revealed the first-ever image of a supermassive black hole in the galaxy M87. In 2022, they followed up with the iconic image of Sagittarius A at the heart of the Milky Way. While these images were groundbreaking, the data behind them held even deeper insights that were hard to decode.
Neural Networks Meet Black Hole Physics
Previous studies by the EHT Collaboration used only a handful of realistic synthetic data files. Funded by the National Science Foundation (NSF) as part of the Partnership to Advance Throughput Computing (PATh) project, the Madison-based CHTC enabled the astronomers to feed millions of such data files into a so-called Bayesian neural network, which can quantify uncertainties. This allowed the researchers to make a much better comparison between the EHT data and the models.
We have long taken it for granted that gravity is one of the basic forces of nature – one of the invisible threads that keeps the universe stitched together. But suppose that this is not true. Suppose the law of gravity is simply an echo of something more fundamental: a byproduct of the universe operating under a computer-like code.
That is the premise of my latest research, published in the journal AIP Advances. It suggests that gravity is not a mysterious force that attracts objects towards one another, but the product of an informational law of nature that I call the second law of infodynamics.
It is a notion that seems like science fiction – but one that is based in physics and evidence that the universe appears to be operating suspiciously like a computer simulation.
Many, from neuroscientists to philosophers to anesthesiologists, have claimed to understand consciousness. Do physicists? Does anyone?
Thanks to observatories like the venerable Hubble Space Telescope (HST) and its next-generation cousin, the James Webb Space Telescope (JWST), astronomers are finally getting the chance to study galaxies that existed just one billion years after the Big Bang. This period is known as “Cosmic Dawn” because it was during this period that the first stars formed and came together to create the first galaxies in the Universe. The study of these galaxies has revealed some surprising and fascinating things that are allowing astronomers to learn how large-scale structures in the Universe came to be and how they’ve evolved since.
For the longest time, it was thought that this cosmological period could only be seen by space telescopes, as they don’t have to deal with interference from Earth’s atmosphere. With advanced technologies ranging from adaptive optics (AO) and coronagraphs to interferometry and spectrometers, ground-based telescopes are pushing the boundaries of what astronomers can see. In recent news, an international team of astronomers using the Cosmology Large Angular Scale Surveyor (CLASS) announced the first-ever detection of radiation from the cosmic microwave background (CMB) interacting with the first stars in the Universe. These findings shed light on one of the least understood periods in cosmological history.
The study that details their findings, which recently appeared in The Astrophysical Journal, was led by Yunyang Li — an observational cosmologist from the Kavli Institute for Cosmological Physics (University of Chicago) and The William H. Miller III Department of Physics and Astronomy at Johns Hopkins University (JHU). He was joined by many JHU colleagues, as well as astrophysicists from the National Institute of Standards and Technology, the Argonne National Laboratory, the Los Alamos National Laboratory, the Harvard-Smithsonian Center for Astrophysics, the Massachusetts Institute of Technology (MIT), the NASA Goddard Space Flight Center, and many prestigious universities.
A new argument explores how the growth of disorder could cause massive objects to move toward one another. Physicists are both interested and skeptical.