БЛОГ

Archive for the ‘chemistry’ category

Dec 3, 2024

Nutrients related to vitamin B12 influence microbial growth and reshape soil microbiomes, research finds

Posted by in categories: biological, chemistry

Communities of microbes (microbiomes), particularly in soils, can be startlingly diverse, with as many as 10,000 species in just a cup of material. Scientists are working to understand how microbiomes and their members respond to their environments. These processes can profoundly shape the properties and composition of soils.

In a pair of studies published in The ISME Journal, researchers investigated how different species of interact with one another and exchange resources such as vitamins. The studies focused on corrinoids, the vitamin B12 family of nutrients. Many bacteria in the environment cannot produce these chemicals.

Focusing on a single type of nutrient enables the study of microbiomes in greater detail. The two studies further synergized by focusing on the same California grassland soil, allowing the researchers to generate a framework for understanding in this system.

Dec 2, 2024

Study reveals how stem cells respond to environmental signals, with implications for IBD and colorectal cancer

Posted by in categories: biotech/medical, chemistry, health

A new study from The Hospital for Sick Children (SickKids) and Institut Curie reveals how stem cells sense and respond to their environment, with implications for inflammatory bowel disease and colorectal cancer.

Stem cells constantly adapt to their environment to maintain organ and tissue health, informed by and physical forces. When they do not function as intended, stem cells can result in a number of health conditions including (IBD) and colorectal (bowel) cancer, where they continue to divide until a tumor forms.

Until now, how stem cells sense the physical forces around them has remained unclear, but novel findings published in Science led by Dr. Meryem Baghdadi, a former SickKids postdoctoral researcher, Dr. Tae-Hee Kim at SickKids and Dr. Danijela Vignjevic at Institut Curie, has revealed that stem cells depend on two , called PIEZO1 and PIEZO2, for their survival.

Dec 1, 2024

Microwave-induced pyrolysis: A promising solution for recycling electric cables

Posted by in categories: chemistry, sustainability

The demand for electronics has led to a significant increase in e-waste. In 2022, approximately 62 million tons of e-waste were generated, marking an 82% increase from 2010. Projections indicate that this figure could rise to 82 million tons by 2030.

E-waste contains valuable materials such as metals, semiconductors, and rare elements that can be reused. However, in 2022, only 22.3% of e-waste was properly collected and recycled, while the remaining materials, estimated to be worth almost $62 billion, were discarded in landfills.

Although efforts to improve e-waste recycling continue, the process remains labor-intensive, and a significant portion of e-waste is exported to developing countries, where cheap labor supports informal recycling practices involving hazardous chemicals.

Nov 30, 2024

Cosmological model proposes dark matter production during pre-Big Bang inflation

Posted by in categories: chemistry, cosmology, physics

As physicists continue their struggle to find and explain the origin of dark matter, the approximately 80% of the matter in the universe that we can’t see and so far haven’t been able to detect, researchers have now proposed a model where it is produced before the Big Bang.

Their idea is that dark matter would be produced during a infinitesimally short inflationary phase when the size of the universe quickly expanded exponentially. The new model was published in Physical Review Letters by three scientists from Texas in the US.

An intriguing idea among cosmologists is that dark matter was produced through its interaction with a thermal bath of some species, and its abundance is created by “freeze-out” or “freeze-in.” In the freeze-out scenario, dark matter is in chemical equilibrium with the bath at the earliest times—the concentration of each does not change with time.

Nov 30, 2024

New hybrid catalyst developed for clean oxygen production

Posted by in categories: chemistry, energy, sustainability

A research team at the Institute of Materials Chemistry at TU Wien, led by Professor Dominik Eder, has developed a new synthetic approach to create durable, conductive and catalytically active hybrid framework materials for (photo)electrocatalytic water splitting. The study is published in Nature Communications.

The development of technologies for sustainable energy carriers, such as hydrogen, is essential. A promising way to produce hydrogen (H2) is from splitting water into H2 and oxygen (O2), either electrochemically or using light, or both—a path that the team follows. However, this process requires a catalyst that accelerates the reaction without being consumed. Key criteria for a catalyst include a large surface area for the adsorption and splitting of water molecules, and durability for .

Zeolitic imidazolate frameworks (ZIFs), a class of hybrid organic/inorganic materials with molecular interfaces and numerous pores, offer record surface areas and ample adsorption sites for water as catalysts. They consist of single metal ions, such as cobalt ions, which are connected by specific organic molecules, called ligands, through what is called coordination bonds. Conventional ZIFs only contain a single type of organic ligand.

Nov 29, 2024

Emotional body odors may enhance the effect of mindfulness therapy

Posted by in categories: chemistry, neuroscience

Emotional body odors may have the potential to enhance the anxiety-reducing effects of mindfulness. This is shown by a pilot study published in the Journal of Affective Disorders, co-authored by researchers from Karolinska Institutet.

Body odors can serve as a means of social communication. Body odors, such as sweat, contain a cocktail of chemical processes (so-called chemosignals), which in turn are influenced by a person’s emotional state. Studies indicate that individuals exposed to chemosignals from a person in a particular emotional state, such as fear or happiness, exhibit a certain replication of this state. This replication occurs unconsciously and has most often been observed through different physiological tests.

As most studies in this area have involved healthy subjects, the overall goal of this project was to study the potential benefit of chemosignals for individuals with . The purpose of this study was therefore to investigate whether emotional can enhance the benefits of a mindfulness-based intervention for individuals with social or depression.

Nov 29, 2024

Newly Discovered Microbe Turns Carbon Into Energy — and Sheds Light on Life’s Origins

Posted by in categories: biotech/medical, chemistry

An unusual mode of energy metabolism discovered in a newly identified microbe provides fresh insights into primitive life processes and offers promising biotechnological applications.

Unearthed in the deep springs of northern California, this organism converts carbon dioxide into energy-rich chemicals using a previously unknown metabolic pathway, potentially mimicking early life mechanisms and paving the way for advancements in microbial manufacturing and biofuel production.

Discovery of Unique Microbe.

Nov 29, 2024

3D-Printed Solutions Shield Electronics from Electrostatic Discharge

Posted by in categories: 3D printing, chemistry

Electrostatic discharge (ESD) protection is a significant concern in the chemical and electronics industries. In electronics, ESD often causes integrated circuit failures due to rapid voltage and current discharges from charged objects, such as human fingers or tools.

With the help of 3D printing techniques, researchers at Lawrence Livermore National Laboratory (LLNL) are “packaging” electronics with printable elastomeric silicone foams to provide both mechanical and electrical protection of sensitive components. Without suitable protection, substantial equipment and component failures may occur, leading to increased costs and potential workplace injuries. The team’s research is featured in ACS Applied Materials & Interfaces.

3D printing is a rapidly growing manufacturing method that enables the production of cellular foams with customizable pore architectures to achieve compressive mechanical properties that can be tailored to minimize permanent deformation by evenly distributing stress throughout the printed architecture.

Nov 29, 2024

An AI Chemist Made A Catalyst to Make Oxygen On Mars Using Local Materials

Posted by in categories: chemistry, humor, information science, robotics/AI, space travel

Breaking oxygen out of a water molecule is a relatively simple process, at least chemically. Even so, it does require components, one of the most important of which is a catalyst. Catalysts enable reactions and are linearly scalable, so if you want more reactions quickly, you need a bigger catalyst. In space exploration, bigger means heavier, which translates into more expensive. So, when humanity is looking for a catalyst to split water into oxygen and hydrogen on Mars, creating one from local Martian materials would be worthwhile. That is precisely what a team from Hefei, China, did by using what they called an “AI Chemist.”

Unfortunately, the name “AIChemist” didn’t stick, though that joke might vary depending on the font you read it in. Whatever its name, the team’s work was some serious science. It specifically applied machine learning algorithms that have become all the rage lately to selecting an effective catalyst for an “oxygen evolution reaction” by utilizing materials native to Mars.

Continue reading “An AI Chemist Made A Catalyst to Make Oxygen On Mars Using Local Materials” »

Nov 29, 2024

Modified ribosomes could be a possible mechanism of antibiotic resistance

Posted by in categories: biotech/medical, chemistry, food

Bacteria modify their ribosomes when exposed to widely used antibiotics, according to research published in Nature Communications. The subtle changes might be enough to alter the binding site of drug targets and constitute a possible new mechanism of antibiotic resistance.

Escherichia coli is a common bacterium which is often harmless but can cause serious infections. The researchers exposed E. coli to streptomycin and kasugamycin, two drugs which treat bacterial infections. Streptomycin has been a staple in treating tuberculosis and other infections since the 1940s, while kasugamycin is less known but crucial in agricultural settings to prevent bacterial diseases in crops.

Both antibiotics tamper with bacteria’s ability to make new proteins by specifically targeting their ribosomes. These molecular structures create proteins and are themselves made of proteins and ribosomal RNA. Ribosomal RNA is often modified with chemical tags that can alter the shape and function of the . Cells use these tags to fine tune protein production.

Page 1 of 34512345678Last