Toggle light / dark theme

Pancreatic organoid study reveals key factors shaping complex lumen formation

Organs often have fluid-filled spaces called lumens, which are crucial for organ function and serve as transport and delivery networks. Lumens in the pancreas form a complex ductal system, and its channels transport digestive enzymes to the small intestine. Understanding how this system forms in embryonic development is essential, both for normal organ formation and for diagnosing and treating pancreatic disorders. Despite their importance, how lumens take certain shapes is not fully understood, as studies in other models have largely been limited to the formation of single, spherical lumens. Organoid models, which more closely mimic the physiological characteristics of real organs, can exhibit a range of lumen morphologies, such as complex networks of thin tubes.

Researchers in the group of Anne Grapin-Botton, director at the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG) in Dresden, Germany, and also Honorary Professor at TU Dresden, teamed up with colleagues from the group of Masaki Sano at the University of Tokyo (Japan), Tetsuya Hiraiwa at the Institute of Physics of Academia Sinica (Taiwan), and with Daniel Rivéline at the Institut de Génétique et de Biologie Moléculaire et Cellulaire (France) to explore the processes involved in complex lumen formation. Working with a combination of computational modeling and experimental techniques, the scientists were able to identify the crucial factors that control lumen shape.

Three-dimensional pancreatic structures, also called pancreatic organoids, can form either large spherical lumen or narrow complex interconnected lumen structures, depending on the medium in the dish. By adding specific chemical drugs altering cell proliferation rate and pressure in the lumen, we were able to change lumen shape. We also found that making the epithelial cells surrounding the lumen more permeable reduces pressure and can change the shape of the lumen as well.

This years biggest breakthroughs in longevity!

Wrap up for 2025.


Every year I compile what I think were some important contributions to longevity research. Here is my list for 2025!!

Find me on Twitter — / eleanorsheekey.

Support the channel.
through PayPal — https://paypal.me/sheekeyscience?coun… through Patreon — / thesheekeyscienceshow TIMESTAMPS: 00:00 – Intro & “What is aging?” / Hallmarks 2025 02:07 – Cellular reprogramming 05:47 – Senescent cells 11:45 – GLP‑1 agonists & ITP 13:43 – Elastin fragments & ECM aging 15:22 – Cardiac ‘age‑switch’ experiment 16:18 – Systemic environment: FOXO3 cells, antler EVs, plasma exchange 19:26 – Things you wouldn’t have thought of: AI-predicted antibodies REFERENCES: What is aging / hallmarks Hallmarks of aging update 2025 (14 hallmarks, ECM + psychosocial isolation) https://www.sciencedirect.com/science… reprogramming Prevalent mesenchymal drift in aging and disease is reversed by partial reprogramming – Cell 2025 https://doi.org/10.1016/j.cell.2025.0… A single factor for safer cellular rejuvenation (SB000) – bioRxiv 2025 https://doi.org/10.1101/2025.06.05.65https://www.biorxiv.org/content/10.11… OpenAI x Retro Biosciences: AI‑designed reprogramming factors https://openai.com/index/accelerating… Restoration of neuronal progenitors by partial reprogramming in the aged neurogenic niche – Nature Aging 2024 (YouthBio’s scientific basis) https://doi.org/10.1038/s43587-024-00… Chemical reprogramming ameliorates cellular hallmarks of aging and extends lifespan in Caenorhabditis elegans – EMBO Molecular Medicine 2025 https://doi.org/10.1038/s44321-025-00https://pmc.ncbi.nlm.nih.gov/articles… Senescent cells An unbiased cell‑culture selection yields DNA aptamers as senescence‑specific reagents – Aging Cell 2025 https://doi.org/10.1111/acel.70245 Senolytic CAR T cells reverse senescence‑associated pathologies – Amor et al., Nature 2020 https://doi.org/10.1038/s41586-020-24… Anti‑uPAR CAR T cells reverse and prevent aging‑associated defects in intestinal regeneration and fitness – Nature Aging 2025 https://doi.org/10.1038/s43587-025-01… Rejuvenation of Senescent Cells, In Vitro and In Vivo, by Low‑Frequency Ultrasound – Aging Cell 2025 https://pmc.ncbi.nlm.nih.gov/articles… Supplements, ITP & GLP‑1s Are GLP‑1s the first longevity drugs? – Nature Biotechnology 2025 https://doi.org/10.1038/s41587-025-02… GLP‑1 receptor agonists at the crossroads of metabolism and longevity – Nature Aging https://www.nature.com/articles/s4151… Extension of lifespan by epicatechin, halofuginone and mitoglitazone in male but not female UM‑HET3 mice – GeroScience 2025 https://doi.org/10.1007/s11357-025-01https://pubmed.ncbi.nlm.nih.gov/40973… ECM, elastin & cardiac environment Elastin‑derived extracellular matrix fragments drive aging through innate immune activation – Nature Aging 2025 https://doi.org/10.1038/s43587-025-00… Sun, A.R., Ramli, M.F.H., Shen, X. et al. Hybrid hydrogel–extracellular matrix scaffolds identify biochemical and mechanical signatures of cardiac ageing. Nat. Mater. 24, 1489–1501 (2025). https://doi.org/10.1038/s41563-025-02… Systemic environment: stem cells, EVs, plasma Senescence‑resistant human mesenchymal progenitor cells counter aging in primates – Cell 2025 https://doi.org/10.1016/j.cell.2025.0… Attenuation of primate aging via systemic infusion of senescence‑resistant cells – https://pmc.ncbi.nlm.nih.gov/articles… Extracellular vesicles from antler blastema progenitor cells reverse bone loss and mitigate aging‑related phenotypes – Nature Aging 2025 https://pmc.ncbi.nlm.nih.gov/articles… Human clinical trial of plasmapheresis effects on biomarkers of aging – Aging Cell 2025 https://pmc.ncbi.nlm.nih.gov/articles… “Things you wouldn’t think of” – AI antibodies Atomically accurate de novo design of antibodies with atomic precision – Baker Lab, Nature 2025 https://doi.org/10.1038/s41586-025-09… Computational design of human antibodies targeting any antigen – https://doi.org/10.1016/j.cell.2025.1… Please note that The Sheekey Science Show is distinct from Eleanor Sheekey’s teaching and research roles. The information provided in this show is not medical advice, nor should it be taken or applied as a replacement for medical advice. The Sheekey Science Show and guests assume no liability for the application of the information discussed. Icons in intro; “https://www.freepik.com/free-photos-v…“Background vector created by freepik — www.freepik.com.
through Patreon — / thesheekeyscienceshow.

TIMESTAMPS:

Deep learning creates virtual multiplexed immunostaining to improve cancer diagnosis

Researchers at the University of California, Los Angeles (UCLA), in collaboration with pathologists from Hadassah Hebrew University Medical Center and the University of Southern California, have developed a deep learning–based method that can digitally generate multiple immunohistochemical stains from a single, unstained tissue section.

The work is published in the journal BME Frontiers.

The approach enables accurate assessment of vascular invasion—a key indicator of cancer aggressiveness—without the need for conventional chemical staining procedures.

Modeling human embryo implantation in vitro

The new 3D model system looks to replicate the complex physiological properties and cellular composition of the endometrium. The model is built in a step-by-step process by bringing together the different components of endometrial tissue. The team isolated two essential cell types that form endometrial tissue – epithelial cells and stromal cells – from tissue donated by healthy people who had endometrial biopsies.

As well as the cell types, the researchers sought to recreate the structure of the womb lining. Information from donated endometrial tissue was used to identify the tissue components that give the womb lining its structure. The researchers were able to incorporate these components together with the stromal cells into a special type of gel to support the growth of the cells in a thick layer. On top of this, they added the epithelial cells, which spread out over the surface of the stromal cells.

Once assembled, this formed an advanced replica of the womb lining, matching a biopsy of endometrial tissue in terms of cellular architecture, and showing responses to hormone stimulation that indicate the engineered womb lining’s receptivity for embryo implantation.

The team tested their model using donated early-stage human embryos from IVF procedures, and found that the embryo – at this point a compact ball of cells – underwent the expected stages expected of adhesion and invasion into the endometrial scaffold. Following implantation, the embryos increased secretion of human chorionic gonadotropin (hCG), a biochemical marker used in pregnancy tests to confirm pregnancy, and other pregnancy-associated proteins.

Furthermore, the system supported post-implantation development of the embryo, enabling the analysis of embryo stages (12−14 days post fertilisation) that have been largely unexplored. The researchers observed that implanted embryos reached several developmental milestones, such as the appearance of specialist cell types in the embryo and also the establishment of precursor cell types important for the development of the placenta.

Using single cell analysis of implantation sites, the researchers were able to profile cells at the interface between the embryo and endometrium model, effectively listening in to the molecular communication between the tissues. Their results provide new insight into the complex interactions between the embryo and endometrial environment that underpin embryo development immediately after implantation.


Manganese gets its moment as a potential fuel cell catalyst

The road to a more sustainable planet may be partially paved with manganese. According to a new study by researchers at Yale and the University of Missouri, chemical catalysts containing manganese—an abundant, inexpensive metallic element—proved highly effective in converting carbon dioxide into formate, a compound viewed as a potential key contributor of hydrogen for the next generation of fuel cells.

The new study appears in the journal Chem. The lead authors are Yale postdoctoral researcher Justin Wedal and Missouri graduate research assistant Kyler Virtue; the senior authors are professors Nilay Hazari of Yale and Wesley Bernskoetter of Missouri.

Sunlight-driven nanoparticles enable cleaner ammonia synthesis at room temperature

Ammonia (NH3) is a colorless chemical compound comprised of nitrogen and hydrogen that is widely used in agriculture and in industrial settings. Among other things, it is used to produce fertilizers, as well as cleaning products and explosives.

Currently, ammonia is primarily produced via the so-called Haber-Bosch process, an industrial technique that entails prompting a reaction between nitrogen and hydrogen at very high temperatures and pressure. Despite its widespread use, this process is known to be highly energy-intensive and is estimated to be responsible for approximately 3% of global greenhouse gas emissions.

Researchers at Stanford University School of Engineering, Boston College and other institutes have identified new promising catalysts (i.e., materials that speed up chemical reactions) that could enable the sunlight-driven synthesis of ammonia at room temperature and under normal atmospheric pressure.

Microplastics Are Leaking Invisible Chemical Clouds Into Rivers and Oceans

Researchers have mapped the molecular changes that unfold as sunlight causes plastics to leach dissolved organic matter, findings that could reshape understanding of ecosystem health, water quality, and global carbon cycling. Scientists have found that microplastics drifting through rivers, lakes

Water’s enigmatic surface: X-ray snapshots reveal atoms and molecules at work

Water is all around us, yet its surface layer—home to chemical reactions that shape life on Earth—is surprisingly hard to study. Experiments at SLAC’s X-ray laser are bringing it into focus.

Two-thirds of Earth’s surface is covered in water, most of it in oceans so deep and vast that only one-fifth of their total volume has been explored. Surprisingly, though, the most accessible part of this watery realm—the water’s surface, exposed on wave tops, raindrops and ponds full of skittering water striders—is one of the hardest to get to know.

Just a few layers of atoms thick, the surface plays an outsized role in the chemistry that makes our world what it is—from the formation of clouds and the recycling of water through rainfall to the ocean’s absorption of carbon dioxide from the atmosphere.

Quantum calculations expose hidden chemistry of ice

When ultraviolet light hits ice—whether in Earth’s polar regions or on distant planets—it triggers a cascade of chemical reactions that have puzzled scientists for decades.

Now, researchers at the University of Chicago Pritzker School of Molecular Engineering (UChicago PME) and collaborators at the Abdus Salam International Center for Theoretical Physics (ICTP) have used quantum mechanical simulations to reveal how tiny imperfections in ice’s crystal structure dramatically alter how ice absorbs and emits light. The findings, published in Proceedings of the National Academy of Sciences, pave the way for scientists to better understand what happens at a sub-atomic scale when ice melts, which has implications including improving predictions of the release of greenhouse gases from thawing permafrost.

“No one has been able to model what happens when UV light hits ice with this level of accuracy before,” said Giulia Galli, Liew Family Professor of Molecular Engineering and one of the senior authors of the new work. “Our paper provides an important starting point to understand the interaction of light with ice.”

Two-step flash Joule heating method recovers lithium‑ion battery materials quickly and cleanly

A research team at Rice University led by James Tour has developed a two-step flash Joule heating-chlorination and oxidation (FJH-ClO) process that rapidly separates lithium and transition metals from spent lithium-ion batteries. The method provides an acid-free, energy-saving alternative to conventional recycling techniques, a breakthrough that aligns with the surging global demand for batteries used in electric vehicles and portable electronics.

Published in Advanced Materials, this research could transform the recovery of critical battery materials. Traditional recycling methods are often energy intensive, generate wastewater and frequently require harsh chemicals. In contrast, the FJH-ClO process achieves high yields and purity of lithium, cobalt and graphite while reducing energy consumption, chemical usage and costs.

“We designed the FJH-ClO process to challenge the notion that battery recycling must rely on acid leaching,” said Tour, the T.T. and W.F. Chao Professor of Chemistry and professor of materials science and nanoengineering. “FJH-ClO is a fast, precise way to extract valuable materials without damaging them or harming the environment.”

/* */