Toggle light / dark theme

Lab-grown diamond coatings shown to prevent mineral scale in industrial pipes

In industrial pipes, mineral deposits build up the way limescale collects inside a kettle ⎯ only on a far larger and more expensive scale. Mineral scaling is a major issue in water and energy systems, where it slows flow, strains equipment and drives up costs.

A new study by Rice University engineers shows that lab-grown diamond coatings could resolve the issue, providing an alternative to chemical additives and mechanical cleaning, both of which offer only temporary relief and carry environmental or operational downsides.

“Because of these limitations, there is growing interest in materials that can naturally resist scale formation without constant intervention,” said Xiang Zhang, assistant research professor of materials science and nanoengineering and a first author on the study alongside Rice postdoctoral researcher Yifan Zhu. “Our work addresses this urgent need by identifying a coating material that can ‘stay clean’ on its own.”

Quantum ground states: Scalable counterdiabatic driving technique enables reliable and rapid preparation

Quantum ground states are the states at which quantum systems have the minimum possible energy. Quantum computers are increasingly being used to analyze the ground states of interesting systems, which could in turn inform the design of new materials, chemical compounds, pharmaceutical drugs and other valuable goods.

The reliable preparation of quantum ground states has been a long-standing goal within the physics research community. One quantum computing method to prepare ground states and other desired states is known as adiabatic state preparation.

This is a process that starts from an initial Hamiltonian, a mathematical operator that encodes a system’s total energy and for which the ground state is known, gradually changing it to reach a final Hamiltonian, which encodes the final ground state.

Researchers uncover the source of widespread ‘forever chemical’ contamination in North Carolina

An environmental chemistry laboratory at Duke University has solved a longstanding mystery of the origin of high levels of PFAS—so-called “forever chemicals”—contaminating water sources in the Piedmont region of North Carolina.

By sampling and analyzing sewage in and around Burlington, NC, the researchers traced the chemicals to a local textile manufacturing plant. The source remained hidden for years because the facility was not releasing chemical forms of PFAS that are regulated and monitored. The culprit was instead solid nanoparticle PFAS “precursors” that degrade into the chemicals that current tests are designed to detect.

Incredibly, these precursors were being released into the sewer system at concentrations up to 12 million parts-per-trillion—approximately 3 million times greater than the Environmental Protection Agency’s recently-enacted drinking water regulatory limit for certain types of PFAS.

Arginine supplementation curbs Alzheimer’s disease pathology in animal models

Alzheimer’s disease (AD), a progressive neurodegenerative disorder, is one of the leading causes of dementia worldwide, and currently has no definitive cure. Although antibody-based therapies that target amyloid β (Aβ) have recently been developed, their clinical effectiveness remains limited. These treatments can be costly and cause immune-related side effects, highlighting the need for safer, affordable, and widely accessible approaches that can slow the progression of AD.

In a study, published online on October 30, 2025, in Neurochemistry International, researchers from Kindai University and collaborating institutions discovered that oral administration of arginine, a naturally occurring amino acid and safe chemical chaperone, effectively suppresses Aβ aggregation and its toxic effects in animal models of AD.

The researchers emphasized that although arginine is available as an over-the-counter dietary supplement, the dosage and administration protocol employed in this study was optimized for research purposes and does not correspond to commercially available formulations.

Laser-induced break-up of C₆₀ fullerenes caught in real-time on X-ray camera

The understanding of complex many-body dynamics in laser-driven polyatomic molecules is crucial for any attempt to steer chemical reactions by means of intense light fields. Ultrashort and intense X-ray pulses from accelerator-based free electron lasers (FELs) now open the door to directly watch the strong reshaping of molecules by laser fields.

A prototype molecule, the famous football-shaped “Buckminsterfullerene” C₆₀, was studied both experimentally and theoretically by physicists from two Max Planck Institutes, the one for Nuclear Physics (MPIK) in Heidelberg and the one for the Physics of Complex Systems (MPI-PKS) in Dresden in collaboration with groups from the Max Born Institute (MBI) in Berlin and other institutions from Switzerland, U.S. and Japan.

For the first time, the experiment carried out at the Linac Coherent Light Source (LCLS) of the SLAC National Accelerator Laboratory could image strong-laser-driven molecular dynamics in C₆₀ directly.

New implant captures gut-brain signals in awake, moving animals

Scientists have been able to measure the electrical signals in the “second brain in our guts” for the first-ever time, giving renewed understanding to its interconnection with the brain.

Researchers from the Department of Chemical Engineering and Biotechnology (CEB) and Department of Engineering at the University of Cambridge, and Thayer School of Engineering at Dartmouth have created a miniature device, thinner than the width of a hair, that can be placed between the layers of the colon to record these signals.

The device, a soft, flexible electronic implant, has been tested in rodents and pigs so far and works even in freely moving animals, detecting responses to various stimulants and physical pressure.

Ursula Eysin on Uncertainty and Future Scenarios

How do we turn uncertainty from a threat into an advantage?

Three years ago, I sat down with someone who has built her entire career around that question: Ursula Eysin, founder of Red Swan and one of the most multidimensional futurists I’ve ever met.

Ursula is a trained ballerina who speaks seven languages, reads chemistry books for fun, mentors startups, and teaches at five universities — and somehow still finds time to help leaders navigate the unknown with clarity and courage.

In this conversation, we dig into: • Why predicting the future is a powerless position • Scenario planning vs. futurism — and why leaders need both • How to reframe uncertainty as a strategic asset • What it truly means to connect as humans in an age of AI • And why strong, diverse leadership matters more than ever.

My favourite line from Ursula remains razor-sharp:

“Turn uncertainty into an advantage. See it as a gift. And connect to other people.”

If you’re steering a team, a company, or even your own life through volatility, this one is worth your time.

Aging alters the protein landscape in the brain — diet can counteract this

A study by the Leibniz Institute on Aging – Fritz Lipmann Institute (FLI) in Jena shows that the chemical composition of proteins in the brain undergoes fundamental changes with aging. In particular, ubiquitylation—a process that marks proteins and thus controls their activity and degradation—undergoes drastic changes in the aging brain. Interestingly, a change in nutrition, such as short-term dietary restriction, can partially revert some of these molecular patterns. These findings open up new opportunities to better understand the aging process of the brain and related diseases.

Airborne sensors map ammonia plumes in California’s Imperial Valley

A recent study led by scientists at NASA’s Jet Propulsion Laboratory in Southern California and the nonprofit Aerospace Corporation shows how high-resolution maps of ground-level ammonia plumes can be generated with airborne sensors, highlighting a way to better track the gas.

A key chemical ingredient of fine particulate matter—tiny particles in the air known to be harmful when inhaled—ammonia can be released through agricultural activities such as livestock farming and geothermal power generation as well as natural geothermal processes. Because it’s not systematically monitored, many sources of the pungent gas go undetected.

Published in Atmospheric Chemistry and Physics, the study focuses on a series of 2023 research flights that covered the Imperial Valley to the southeast of the Salton Sea in inland Southern California, as well as the Eastern Coachella Valley to its northwest. Prior satellite-based research has identified the Imperial Valley as a prolific source of gaseous ammonia.

/* */