Toggle light / dark theme

SCFFBXW11 Complex Targets Interleukin-17 Receptor A for Ubiquitin–Proteasome-Mediated Degradation

Interleukin-17 (IL-17) is a pro-inflammatory cytokine that participates in innate and adaptive immune responses and plays an important role in host defense, autoimmune diseases, tissue regeneration, metabolic regulation, and tumor progression. Post-translational modifications (PTMs) are crucial for protein function, stability, cellular localization, cellular transduction, and cell death. However, PTMs of IL-17 receptor A (IL-17RA) have not been investigated. Here, we show that human IL-17RA was targeted by F-box and WD repeat domain-containing 11 (FBXW11) for ubiquitination, followed by proteasome-mediated degradation. We used bioinformatics tools and biochemical techniques to determine that FBXW11 ubiquitinated IL-17RA through a lysine 27-linked polyubiquitin chain, targeting IL-17RA for proteasomal degradation.

Taxonomy of Bacteria: Identification and Classification

We’ve been looking at bacteria for a few centuries now, so how do we categorize them? We love to classify things and put them in groups, so how does that work for bacteria? Well let’s learn about Gram-staining, antigens, other phenotypic and genotypic properties, and we will be well on our way to understanding this process!

Script by Kellie Vinal.

Watch the whole Microbiology playlist: http://bit.ly/ProfDaveMicrobio.

General Chemistry Tutorials: http://bit.ly/ProfDaveGenChem.
Organic Chemistry Tutorials: http://bit.ly/ProfDaveOrgChem.
Biochemistry Tutorials: http://bit.ly/ProfDaveBiochem.
Biology/Genetics Tutorials: http://bit.ly/ProfDaveBio.
Anatomy & Physiology Tutorials: http://bit.ly/ProfDaveAnatPhys.
Biopsychology Tutorials: http://bit.ly/ProfDaveBiopsych.
Immunology Tutorials: http://bit.ly/ProfDaveImmuno.
History of Drugs Videos: http://bit.ly/ProfDaveHistoryDrugs.

EMAIL► [email protected].
PATREON► / professordaveexplains.

Check out \.

Ceramic electrochemical cell production temperature drops by over 500°C with new method

As power demand surges in the AI era, the protonic ceramic electrochemical cell (PCEC), which can simultaneously produce electricity and hydrogen, is gaining attention as a next-generation energy technology. However, this cell has faced the technical limitation of requiring an ultra-high production temperature of 1,500°C.

A KAIST research team has succeeded in establishing a new manufacturing process that lowers this limit by more than 500°C for the first time.

Tiny Earthquakes Spark a Microbial Awakening Beneath Yellowstone

Researchers studying Yellowstone’s depths discovered that small earthquakes can recharge underground microbial life.

The quakes exposed new rock and fluids, creating bursts of chemical energy that microbes can use. Both the water chemistry and the microbial communities shifted dramatically in response. This dynamic may help explain how life survives in deep, dark environments.

A large portion of earth’s life lives underground.

Total Synthesis and Anticancer Study of (+)-Verticillin AClick to copy article linkArticle link copied!

For the first time, MIT chemists have synthesized a fungal compound known as verticillin A, which was discovered more than 50 years ago and has shown potential as an anticancer agent.

The compound has a complex structure that made it more difficult to synthesize than related compounds, even though it differed by only a couple of atoms.

“We have a much better appreciation for how those subtle structural changes can significantly increase the synthetic challenge,” says Mohammad Movassaghi, an MIT professor of chemistry. “Now we have the technology where we can not only access them for the first time, more than 50 years after they were isolated, but also we can make many designed variants, which can enable further detailed studies.”

In tests in human cancer cells, a derivative of verticillin A showed particular promise against a type of pediatric brain cancer called diffuse midline glioma. More tests will be needed to evaluate its potential for clinical use, the researchers say.

Movassaghi and Jun Qi, an associate professor of medicine at Dana-Farber Cancer Institute/Boston Children’s Cancer and Blood Disorders Center and Harvard Medical School, are the senior authors of the study, which appears today in the Journal of the American Chemical Society. Walker Knauss PhD ’24 is the lead author of the paper. Xiuqi Wang, a medicinal chemist and chemical biologist at Dana-Farber, and Mariella Filbin, research director in the Pediatric Neurology-Oncology Program at Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, are also authors of the study.


Bridging the gap between molecules and materials in quantum chemistry with localized active spaces

Emerging materials between molecules and materials demand new modeling approaches. Here, the authors present a localized active space approach that enables accurate and efficient band structure calculations to capture long-range charge and energy transfer in correlated materials.

Plant ‘first responder’ cells warn neighbors about bacterial pathogens

Purdue University researchers found that a subset of epidermal cells in plant leaves serves as early responders to chemical cues from bacterial pathogens and communicate this information to neighbors through a local traveling wave of calcium ions. The properties of this local wave differ from those generated when epidermal cells are wounded, suggesting that distinct mechanisms are used by plants to communicate specific types of pathogen attack, the team reported Dec. 2 in Science Signaling.

The new work from Purdue’s Emergent Mechanisms in Biology of Robustness Integration and Organization (EMBRIO) Institute highlights the importance of calcium ion signatures or patterns in the cytoplasm of cells. Plants and animals use calcium ions to transmit biologically critical sensory information within single cells, across tissues and even between organs.

“When a bacterium infects plant material, or when a fungus tries to invade plant tissue, cells and tissues recognize the presence of an attacker,” said Christopher Staiger, a professor in the Department of Botany and Plant Pathology and Distinguished Professor of Biological Sciences. “They recognize both chemical and mechanical cues. This study is largely about how the chemical cues are sensed.”

/* */