БЛОГ

Archive for the ‘nuclear energy’ category

Jan 3, 2020

Iran discovers new oil field with over 50 billion barrels

Posted by in category: nuclear energy

TEHRAN, Iran (AP) — Iran has discovered a new oil field in the country’s south with over 50 billion barrels of crude, its president said Sunday, a find that could boost the country’s proven reserves by a third as it struggles to sell energy abroad over U.S. sanctions.

The announcement by Hassan Rouhani comes as Iran faces crushing American sanctions after the U.S. pulled out of its nuclear deal with world powers last year.

Rouhani made the announcement in a speech in the desert city of Yazd. He said the field was located in Iran’s southern Khuzestan province, home to its crucial oil industry.

Jan 3, 2020

Sustainable supply of minerals and metals key to a low-carbon energy future

Posted by in categories: governance, nuclear energy, sustainability, transportation

The global low-carbon revolution could be at risk unless new international agreements and governance mechanisms are put in place to ensure a sustainable supply of rare minerals and metals, a new academic study has warned.

The amount of cobalt, copper, lithium, cadmium, and rare earth elements needed for solar photovoltaics, batteries, electric vehicle (EV) motors, wind turbines, fuel cells, and nuclear reactors will likely grow at a rapid pace in the upcoming years. Even if alternatives are found for one metal, there will be reliance on another as the scope of possibilities is inherently limited by physical and chemical properties of elements.

However, with global supplies often heavily monopolized by a single country, confronted by social and environmental conflict, or concentrated in poorly functioning markets, there is a real possibility that a shortage of minerals could hold back the urgent need for a rapid upscaling of low-carbon technologies. In some cases, markets are providing misleading signals to investors that can lead to poor decisions. In other cases, the countries or regions supplying minerals are politically unstable.

Jan 3, 2020

From dream to reality: Russia’s ‘Silicon Valley’ to mark 10-year anniversary with new projects

Posted by in categories: biotech/medical, nuclear energy, space

Russia’s Skolkovo innovation center, which is marking 10 years since its founding, has ambitious plans for 2020 and beyond to continue promoting technology and helping small innovative startups grow into profitable companies.

Skolkovo Technopark was built from scratch almost a decade ago to create a platform for research and innovation in key spheres such as energy, IT, space, biomedicine, and nuclear technology. Now the complex has facilities spread around 800,000 square meters and hosts around 500 startups, while there are an additional 1,500 enterprises beyond its campus. Skolkovo hosts around 50 research centers employing more than 15,000 people.

Jan 2, 2020

BWX Technologies, Inc. | People Strong, Innovation Driven

Posted by in categories: government, nuclear energy

NUCLEAR THERMAL PROPULSION


BWX Technologies, Inc. is a leading supplier of nuclear components and fuel to the U.S. government, also providing components and services to the commercial nuclear power industry.

Jan 2, 2020

Laser-heated nanowires produce micro-scale nuclear fusion

Posted by in categories: nanotechnology, nuclear energy, particle physics

Nuclear fusion, the process that powers our sun, happens when nuclear reactions between light elements produce heavier ones. It’s also happening — at a smaller scale — in a Colorado State University laboratory.

Using a compact but powerful laser to heat arrays of ordered nanowires, CSU scientists and collaborators have demonstrated micro-scale nuclear fusion in the lab. They have achieved record-setting efficiency for the generation of neutrons — chargeless sub-atomic particles resulting from the fusion process.

Their work is detailed in a paper published in Nature Communications (“Micro-scale fusion in dense relativistic nanowire array plasmas”), and is led by Jorge Rocca, University Distinguished Professor in electrical and computer engineering and physics. The paper’s first author is Alden Curtis, a CSU graduate student.

Jan 1, 2020

5G, AI, data privacy and mass surveillance — 12 biggest tech policy challenges India will have to face in 2020

Posted by in categories: cybercrime/malcode, government, internet, nuclear energy, policy, robotics/AI, surveillance

As access to the internet grows, so do the risks associated with being online. Cybersecurity threats are on the rise as data hackers find new ways to breach through firewalls. Earlier this year bad actors were able to gain access to the administrative serves of India’s largest nuclear power plant with a simple phishing email.

The government want to increase its cyber might to ward off such hazards but experts feel some of its policies might do the exact opposite.


2020 will be a busy year for India with the 5G spectrum auction still pending, Personal Data Protection Bill under discussion, and the deadline for social.

Continue reading “5G, AI, data privacy and mass surveillance — 12 biggest tech policy challenges India will have to face in 2020” »

Dec 30, 2019

In Pictures: Swedish nuclear power reactor shuts down for good

Posted by in category: nuclear energy

UPDATED: After more than four decades in operation, a nuclear power plant reactor in southern Sweden closed for good on Monday.

Dec 28, 2019

This Powder—Not Gas—Could Rescue Nuclear Fusion

Posted by in category: nuclear energy

Researchers at Princeton University have found a way to make a tokamak nuclear fusion reactor safer using insulating boron powder. The new research appears in the IAEA journal Nuclear Fusion and comes from Princeton’s U.S. Department of Energy-funded Princeton Plasma Physics Laboratory (PPPL).A tokamak, like the huge one that will reach 200 million Celsius in China next year, is a nuclear fusion plasma reactor where extremely hot, charged plasma spins and generates virtually limitless energy. The Princeton research examines the way boron powder can prevent one of the fundamental flaws in existing plasma reactor technology.

Related Story

[img class=”” alt=“image” title=“image” src=“https://hips.hearstapps.com/hmg-prod.s3.amazonaws.com/images/artificial-sun-1576854241.jpg?crop=1.

Dec 26, 2019

Russia to track EARTH-THREATENING asteroids from robot-inhabited nuclear-powered polar Moon base

Posted by in categories: government, nuclear energy, robotics/AI, solar power, space, sustainability

Moon’s southern pole will be a good spot for an observatory that together with space-based telescopes help find dangerous asteroids. Russia plans to build one as part of an ambitious lunar base project.

Conquering the moon is on the Russian space agency’s to-do list for the not-so-distant future. Roscosmos is currently working on a comprehensive plan that the Russian government wants to see before allocating any money for it. Part of a permanent Russian base envisioned on the Moon will be given to an observatory that will serve as part of a “global system for tracking asteroid and comet threats,” a senior Roscosmos official said in a recent interview.

“The location selected for the base is southern pole of the moon. It has favorable relief and conditions: enough light for solar panels, constantly shadowed craters with ice reserves for fuel and raw material,” Aleksandr Bloshenko explained.

Dec 25, 2019

Viewpoint: A Forbidden Transition Allowed for Stars

Posted by in categories: cosmology, evolution, nuclear energy, physics

The discovery of an exceptionally strong “forbidden” beta-decay involving fluorine and neon could change our understanding of the fate of intermediate-mass stars.

Every year roughly 100 billion stars are born and just as many die. To understand the life cycle of a star, nuclear physicists and astrophysicists collaborate to unravel the physical processes that take place in the star’s interior. Their aim is to determine how the star responds to these processes and from that response predict the star’s final fate. Intermediate-mass stars, whose masses lie somewhere between 7 and 11 times that of our Sun, are thought to die via one of two very different routes: thermonuclear explosion or gravitational collapse. Which one happens depends on the conditions within the star when oxygen nuclei begin to fuse, triggering the star’s demise. Researchers have now, for the first time, measured a rare nuclear decay of fluorine to neon that is key to understanding the fate of these “in between” stars [1, 2]. Their calculations indicate that thermonuclear explosion and not gravitational collapse is the more likely expiration route.

The evolution and fate of a star strongly depend on its mass at birth. Low-mass stars—such as the Sun—transition first into red giants and then into white dwarfs made of carbon and oxygen as they shed their outer layers. Massive stars—those whose mass is at least 11 times greater than the Sun’s—also transition to red giants, but in the cores of these giants, nuclear fusion continues until the core has turned completely to iron. Once that happens, the star stops generating energy and starts collapsing under the force of gravity. The star’s core then compresses into a neutron star, while its outer layers are ejected in a supernova explosion. The evolution of intermediate-mass stars is less clear. Predictions indicate that they can explode both via the gravitational collapse mechanism of massive stars and by a thermonuclear process [36]. The key to finding out which happens lies in the properties of an isotope of neon and its ability to capture electrons.

Page 1 of 3712345678Last