Toggle light / dark theme

Real-time technique directly images material failure in 3D to improve nuclear reactor safety and longevity

MIT researchers have developed a technique that enables real-time, 3D monitoring of corrosion, cracking, and other material failure processes inside a nuclear reactor environment.

This could allow engineers and scientists to design safer nuclear reactors that also deliver higher performance for applications like electricity generation and naval vessel propulsion.

During their experiments, the researchers utilized extremely powerful X-rays to mimic the behavior of neutrons interacting with a material inside a nuclear reactor.

MRI technology inspires quantum advancement with 2D materials

The same technology behind MRI images of injury or disease also powers nuclear magnetic resonance (NMR) spectroscopy, which is used to analyze biological molecules for research on diseases and therapeutics. While NMR spectroscopy produces valuable data about the structure of molecules, the resolution is too low to sense individual atoms.

Now, quantum researchers at Purdue University are advancing an approach that could improve the resolution of NMR spectroscopy to the atomic scale and may also have applications in developing quantum computing and quantum communications.

“Conventional NMR spectroscopy is limited to measuring large samples of molecules. We’re interested in developing technologies that can detect and analyze a ,” said Tongcang Li, professor of physics and astronomy in the College of Science and of electrical and computer engineering in the College of Engineering.

Plasma group publishes new framework to advance fusion energy research

Scientists pursuing magnetically-confined nuclear fusion as a clean energy source grapple with the “core-edge challenge,” the need to integrate the core of the reactor, where plasma must be 10 times hotter than the sun, with the reactor’s edge. The edge must sustain a lower temperature to avoid melting of the material containing the plasma and extracting its energy to produce power.

Fusion breakthrough uses inverted D plasma to solve key energy challenge

US’ inverted D plasma research leads to breakthrough in nuclear fusion reactor control.


Scientists at the DIII-D National Fusion Facility are investigating a different approach to tokamak operation that has yielded promising results for the design of future fusion power plants.

Recent experiments have demonstrated that a plasma configuration known as “negative triangularity” can achieve the high-performance conditions necessary for sustained fusion energy, while also addressing a critical challenge related to heat management inside the reactor.

“Plasma Gods Awaken”: US THOR Experiment Ignites Fusion Breakthrough That Terrifies Energy Giants and Promises Unimaginable Power

IN A NUTSHELL 🔬 The Los Alamos experiment achieved a fusion energy yield of 2.4 megajoules, marking a significant breakthrough. 💡 The innovative THOR window system was used to create a self-sustaining “burning plasma.” 🔧 Modifications to the standard hohlraum allowed for the escape of X-rays, aiding in the study of radiation flow and energy

/* */