With an advanced technology known as angle-resolved photoemission spectroscopy (ARPES), scientists are able to map out a material’s electron energy-momentum relationship, which encodes the material’s electrical, optical, magnetic and thermal properties like an electronic DNA. But the technology has its limitations; it doesn’t work well under a magnetic field. This is a major drawback for scientists who want to study materials that are deployed under or even actuated by magnetic fields.
Inspired by refrigerator magnets, a team of Yale researchers may have found a solution. Their study was featured recently on the cover of The Journal of Physical Chemistry Letters.
Quantum materials —such as unconventional superconductors or topological materials—are considered critical to advancing quantum computing, high-efficiency electronics, nuclear fusion, and other fields. But many of them need to be used in the presence of a magnetic field, or even only become activated by magnetic fields. Being able to directly study the electronic structure of these materials in magnetic fields would be a huge help in better understanding how they work.
Silicon semiconductors are widely used as particle detectors; however, their long-term operation is constrained by performance degradation in high-radiation environments. Researchers at University of Tsukuba have demonstrated real-time, two-dimensional position detection of individual charged particles using a gallium nitride (GaN) semiconductor with superior radiation tolerance.
Silicon (Si)-based devices are widely used in electrical and electronic applications; however, prolonged exposure to high radiation doses leads to performance degradation, malfunction, and eventual failure. These limitations create a strong demand for alternative semiconductor materials capable of operating reliably in harsh environments, including high-energy accelerator experiments, nuclear-reactor containment systems, and long-duration lunar or deep-space missions.
Wide-bandgap semiconductors, characterized by strong atomic bonding, offer the radiation tolerance required under such conditions. Among these materials, gallium nitride (GaN)—commonly employed in blue light-emitting diodes and high-frequency, high-power electronic devices—has not previously been demonstrated in detectors capable of two-dimensional particle-position sensing for particle and nuclear physics applications.
New cadets. New era. Infinite possibilities. Catch a new episode of Star Trek: Starfleet Academy every Thursday starting Jan. 15th on Paramount+.
Can quantum tunneling occur at macroscopic scales? Neil deGrasse Tyson and comedian Chuck Nice sit down with John Martinis, UCSB physicist and 2025 Nobel Prize winner in Physics, to explore superconductivity, quantum tunneling, and what this means for the future of quantum computing.
What exactly is macroscopic quantum tunneling, and why did it take decades for its importance to be recognized? We’ve had electrical circuits forever, so what did Martinis discover that no one else saw? If quantum mechanics usually governs tiny particles, why does a superconducting circuit obey the same rules? And what does superconductivity really mean at a quantum level?
How can a system cross an energy barrier it doesn’t have the energy to overcome? What is actually tunneling in a superconducting wire, and what does it mean to tunnel out of superconductivity? We break down Josephson Junctions, Cooper pairs, and other superconducting lingo. Does tunneling happen instantly, or does it take time? And what does that say about wavefunction collapse and our assumptions about instantaneous quantum effects?
Learn what a qubit is and why macroscopic quantum effects are important for quantum computing. Why don’t quantum computers instantly break all encryption? How close are we to that reality, and what replaces today’s cryptography when it happens? Is quantum supremacy a scientific milestone, a geopolitical signal, or both? Plus, we take cosmic queries from our audience: should quantum computing be regulated like nuclear energy? Will qubits ever be stable enough for everyday use? Will quantum computers live in your pocket or on the dark side of the Moon? Can quantum computing supercharge AI, accelerate discovery, or even simulate reality itself? And finally: if we live in a simulation, would it have to be quantum all the way down?
Thanks to our Patrons Fran Rew, Shawn Martin, Kyland Holmes, Samantha McCarroll-Hyne, camille wilson, Bryan, Sammi, Denis Alberti, Csharp111, stephanie woods, Mark Claassen, Joan Tarshis, Abby Powell, Zachary Koelling, JWC, Reese, Fran Ochoa, Bert Berrevoets, Barely A Float Farm, Vasant Shankarling, Michael Rodriguez, DiDTim, Ian Cochrane, Brendan, William Heissenberg Ⅲ, Carl Poole, Ryan McGee, Sean Fullard, Our Story Series, dennis van halderen, Ann Svenson, mi ti, Lawrence Cottone, 123, Patrick Avelino, Daniel Arvay, Bert ten Kate, Kristian Rahbek, Robert Wade, Raul Contreras, Thomas Pring, John, S S, SKiTz0721, Joey, Merhawi Gherezghier, Curtis Lee Zeitelhack, Linda Morris, Samantha Conte, Troy Nethery, Russ Hill, Kathy Woida, Milimber, Nathan Craver, Taylor Anderson, Deland Steedman, Emily Lennox, Daniel Lopez,., DanPeth, Gary, Tony Springer, Kathryn Rhind, jMartin, Isabella Troy Brazoban, Kevin Hobstetter, Linda Pepper, 1701cara, Isaac H, Jonathan Morton, JP, טל אחיטוב Tal Achituv, J. Andrew Medina, Erin Wasser, Evelina Airapetova, Salim Taleb, Logan Sinnett, Catherine Omeara, Andrew Shaw, Lee Senseman, Peter Mattingly, Nick Nordberg, Sam Giffin, LOWERCASEGUY, JoricGaming, Jeffrey Botkin, Ronald Hutchison, and suzie2shoez for supporting us this week.
Just under 15 years after the catastrophic nuclear accident at the Fukushima Daiichi Nuclear Power Plant, Japan has officially restarted a reactor at the world’s largest nuclear plant.
While many argue for the benefits that nuclear power can provide amid a rapidly growing climate crisis, the dangers that it poses are evident across a number of notably horrific incidents over the years.
Disasters in Kyshtym and Chernobyl have displayed the dangerous potential that a nuclear accident can cause, and few have been quite as devastating as the incident that occurred in Fukushima back in 2011.
Beyond their sparkle, diamonds have hidden talents. They shed heat better than any material, tolerate extreme temperatures and radiation, and handle high voltages while wasting almost no electricity—ideal traits for compact, high-power devices. These properties make diamond-based electronics promising for applications in the power grid, industrial power switches, and places with high radiation, such as space or nuclear reactors.
Diamond’s ability to quickly carry heat away from electronic components allows devices to handle large currents and voltages without overheating. This means smaller devices can be used to switch to high power in the grid or in industrial settings. Diamond’s natural resistance to radiation and extreme temperatures could enable electronics to work reliably in places where traditional silicon devices fail.
A research group has achieved a new plasma confinement regime using small 3D magnetic perturbations that simultaneously suppress edge instabilities and enhance core plasma confinement in the Experimental Advanced Superconducting Tokamak (EAST). The research results are published in PRX Energy.
Sustained high plasma confinement at both the core and the edge without edge crash events due to edge instabilities is critical for efficient fusion energy production in tokamaks. However, achieving stable, high-core confinement with an internal transport barrier (ITB) is extremely challenging, especially in tungsten-wall devices where tungsten impurity accumulation must be controlled. Furthermore, controlling edge instabilities usually results in degraded core plasma confinement.
In this study, the researchers applied small 3D magnetic perturbations localized at the plasma edge. This method achieved the suppression of edge instabilities and control of tungsten impurities. For the first time, it also enabled the induction and sustained confinement of high-core plasma with an ITB.
Different atoms and ions possess characteristic energy levels. Like a fingerprint, they are unique for each species. Among them, the atomic ion 173 Yb+ has attracted growing interest because of its particularly rich energy structure, which is promising for applications in quantum technologies and searches for so-called new physics. On the flip side, the complex structure that makes 173 Yb+ interesting has long prevented detailed investigations of this ion.
Now, researchers from PTB, TU Braunschweig, and the University of Delaware have taken a closer look at the ion’s energy structure. To achieve this, they trapped a single 173 Yb+ ion and developed methods for preparing and detecting its energy state despite the complicated energy structure. This enabled high-resolution laser and microwave spectroscopy. The research is published in the journal Physical Review Letters.
In particular, the researchers investigated energy shifts arising from interactions between the nucleus and its surrounding electrons, also called hyperfine structure. Combined with first-principle theory calculations, the precise measurement results yielded new information about the ion’s nucleus.
Researchers from The Grainger College of Engineering at the University of Illinois Urbana-Champaign have reported the first observation of a dynamic magnetochiral instability in a solid-state material. Their findings, published in Nature Physics, bridge ideas from nuclear and high-energy physics with materials science and condensed matter physics to explain how the interplay between symmetry and magnetism can amplify electromagnetic waves.
A material’s behavior is heavily influenced by its symmetries. One unique symmetry of interest to many physicists is chirality. Chiral materials have non-superimposable mirror images, like a right and left hand. For physicists like Fahad Mahmood, Rafael Fernandes and Jorge Noronha, the nonlinear interaction between chiral materials and light is of particular interest. How do these materials respond when light triggers effects beyond the straightforward, linear response?
“If I have a shiny crystal and I put a red laser on it, I’ll get red light back; that’s a linear response, as the frequencies—or colors—of the incoming and outgoing light are the same,” Mahmood said. “You can go a little further and try to excite some frequency so that it sends back a different color: you put red light on something, and it shines back as green, blue or yellow. That’s nonlinear response.”