Toggle light / dark theme

The agricultural sector in South Africa is undergoing a transformation with the introduction of AI-powered harvesting robots. These advanced machines are set to revolutionize farming by increasing efficiency, reducing labor costs, and ensuring better crop yields. With the growing challenges of climate change, labor shortages, and the need for sustainable farming, AI-driven technology is emerging as a critical solution for modern agriculture.

Artificial intelligence has become a vital tool in various industries, and agriculture is no exception. AI-powered robots are designed to perform labor-intensive tasks such as planting, watering, monitoring crop health, and harvesting. These machines utilize machine learning, computer vision, and sensor technology to identify ripe crops, pick them with precision, and minimize waste.

In South Africa, where agricultural labor shortages and rising costs have posed challenges to farmers, AI-driven automation is proving to be a game-changer. With an estimated 8.5% of the country’s workforce employed in agriculture, technological advancements can significantly improve productivity while alleviating labor constraints.

A novel industrial reactor that produces steel using only electricity hit a major milestone after producing a ton of steel at a prototype facility in Massachusetts, US. The technology was developed at MIT and is now set to help the steel industry reduce its emission footprint, a press release said.

Steel production is one of the major contributors to anthropogenic carbon emissions, responsible for up to nine percent of total carbon released into the atmosphere. For every ton of steel produced, 1.89 tons of CO2 are released into the atmosphere.

Mars, the next frontier in space exploration, still poses many questions for scientists. The planet was once more hospitable, characterized by a warm and wet climate with liquid oceans. But today Mars is cold and dry, with most water now located below the surface. Understanding how much water is stored offers critical information for energy exploration, as well as life sustainability on the planet.

A research group from Tohoku University has helped shed light on this by improving an existing Mars climate model. The enhanced model accommodates the various properties of Martian regolith, or the loose deposits of solid rock that comprise Martian soil. The study is published in the Journal of Geophysical Research: Planets.

Mirai Kobayashi says current models fail to account for the fact that laboratory experiments have demonstrated that the water-holding capacity of the regolith is strongly influenced by its adsorption coefficient.

The mass extinction that ended the Permian geological epoch, 252 million years ago, wiped out most animals living on Earth. Huge volcanoes erupted, releasing 100,000 billion metric tons of carbon dioxide into the atmosphere. This destabilized the climate and the carbon cycle, leading to dramatic global warming, deoxygenated oceans, and mass extinction.

However, many plants survived, leaving behind fossils which scientists have used to model a dramatic 10° rise in .

“While fossilized spores and pollen of plants from the Early Triassic do not provide strong evidence for a sudden and catastrophic biodiversity loss, both marine and terrestrial animals experienced the most severe mass extinction in Earth’s history,” explained Dr. Maura Brunetti of the University of Geneva, lead author of the article in Frontiers in Earth Science.

A breakthrough from JMU Würzburg researchers has brought science one step closer by creating a stacked dye system that efficiently moves charge carriers using light—just like in plant cells.

Harnessing Sunlight: The Magic of Photosynthesis

Photosynthesis is the process plants use to convert sunlight, carbon dioxide, and water into energy-rich sugars and oxygen. This remarkable system fuels plant growth and releases the oxygen we breathe.

Could this VR experience change how you see the planet?


For many, constant bad news numbs our reaction to climate disasters. But research suggests that a new type of immersive storytelling about nature told through virtual reality (VR) can both build empathy and inspire us to act.

I’m crying into a VR headset. I’ve just watched a VR experience that tells the story of a young pangolin called Chestnut, as she struggles to survive in the Kalahari Desert. A vast, dusty landscape extends around me in all directions, and her armoured body seems vulnerable as she curls up, alone, to sleep. Her story is based on the life of a real pangolin that was tracked by scientists.

Chestnut hasn’t found enough to ants to eat, since insect numbers have dwindled due to climate change. Her sunny voice remains optimistic even as exhaustion takes over. In the final scenes, she dies, and I must clumsily lift my headset to dab my eyes.

Battery waste has become an increasing problem in recent years due to the massive demand for consumer electronics like smartphones and laptops, as well as the electrification of the automotive industry.

A recent report from Stanford University in the US, published in the journal Nature Communications, found that recycling lithium-ion batteries is far more environmentally friendly than mining for new materials.

The Nano Materials Research Division at the Korea Institute of Materials Science (KIMS), led by Dr. Tae-Hoon Kim and Dr. Jung-Goo Lee has successfully developed a grain boundary diffusion process that enables the fabrication of high-performance permanent magnets without the use of expensive heavy rare earth elements. This pioneering technology marks the world’s first achievement in this field.

The findings are published in Acta Materialia.

Permanent magnets are key components in various high-value-added products, including electric vehicle (EV) motors and robots. However, conventional permanent magnet manufacturing processes have been heavily dependent on heavy rare earth elements, which are exclusively produced by China, leading to high resource dependency and .

With artificial photosynthesis, mankind could utilize solar energy to bind carbon dioxide and produce hydrogen. Chemists from Würzburg and Seoul have taken this one step further: They have synthesized a stack of dyes that comes very close to the photosynthetic apparatus of plants. It absorbs light energy, uses it to separate charge carriers and transfers them quickly and efficiently in the stack.

Photosynthesis is a marvelous process: plants use it to produce and oxygen from the simple starting materials carbon dioxide and water. They draw the energy they need for this complex process from sunlight.

If humans could imitate photosynthesis, it would have many advantages. The free energy from the sun could be used to remove carbon dioxide from the atmosphere and use it to build carbohydrates and other useful substances. It would also be possible to produce hydrogen, as photosynthesis splits water into its components oxygen and hydrogen.

A research team led by Assistant Professor Shogo Mori and Professor Susumu Saito at Nagoya University has developed a method of artificial photosynthesis that uses sunlight and water to produce energy and valuable organic compounds, including pharmaceutical materials, from waste organic compounds. This achievement represents a significant step toward sustainable energy and chemical production.

The findings were published in Nature Communications.

“Artificial photosynthesis involves that mimic the way plants convert sunlight, water, and carbon dioxide into energy-rich glucose,” Saito explained. “Waste products, which are often produced by other processes, were not formed; instead, only energy and useful chemicals were created.”