Toggle light / dark theme

Scientists Preparing to Simulate Human Brain on Supercomputer

Despite its diminutive size, the organ packs almost 500 feet of wiring and 54.5 million synapses into the size of a grain of sand — an astonishing feat of computational neurology research that allows scientists to better understand how signals travel throughout the brain.

And thanks to significant advances of some of the world’s most capable supercomputers, researchers at the Jülich Research Centre in Germany are now aiming their sights at a far more ambitious goal: a simulation at the scale of the entire human brain.

Previous attempts, dating back a decade, like the Human Brain Project, fell largely flat, despite considerable government funding. But as New Scientist reports, the Jülich researchers think they can push things forward. The idea is to bring together several models of smaller regions of the brain with a supercomputer to run simulations of billions of firing neurons.

Efficient cooling method could enable chip-based quantum computers

Quantum computers could rapidly solve complex problems that would take the most powerful classical supercomputers decades to unravel. But they’ll need to be large and stable enough to efficiently perform operations. To meet this challenge, researchers at MIT and elsewhere are developing quantum computers based on ultra-compact photonic chips. These chip-based systems offer a scalable alternative to some existing quantum computers, which rely on bulky optical equipment.

These quantum computers must be cooled to extremely cold temperatures to minimize vibrations and prevent errors. So far, such chip-based systems have been limited to inefficient and slow cooling methods.

Now, a team of researchers at MIT and MIT Lincoln Laboratory has implemented a much faster and more energy-efficient method for cooling these photonic chip-based quantum computers. Their approach achieved cooling to about 10 times below the limit of standard laser cooling.

These Brain-Inspired Computers Are Shockingly Good at Math

New research shows that advances in technology could help make future supercomputers far more energy efficient. Neuromorphic computers are modeled after the structure of the human brain, and researchers are finding that they can tackle difficult mathematical problems at the heart of many scientif

AI, Autonomy, and Scale: Why Elon Musk’s Timeline Will Break Society

Questions to inspire discussion.

🎯 Q: How should retail investors approach AI and robotics opportunities? A: Focus on technology leaders like Palantir, Tesla, and Nvidia that demonstrate innovation through speed of introducing revolutionary, scalable products rather than attempting venture capital strategies requiring $1M bets across 100 companies.

💼 Q: What venture capital strategy do elite firms use for AI investments? A: Elite VCs like A16Z (founded by Marc Andreessen) invest $1M each in 100 companies, expecting 1–10 to become trillion-dollar successes that make all other bets profitable.

🛡️ Q: Which defense sector companies are disrupting established contractors? A: Companies like Anduril are disrupting the five prime contractors by introducing innovative technologies like drones, which have become dominant in recent conflicts due to lack of innovation in the sector.

⚖️ Q: What mindset should investors maintain when evaluating AI opportunities? A: Be a judicious skeptic, balancing optimism with skepticism to avoid getting carried away by hype and marketing, which is undervalued but crucial for informed investment decisions.

Tesla’s Competitive Advantages.

RIKEN-led Project Seeks to Combine The Powers of Quantum Computers And Supercomputers

While supercomputers excel at general-purpose tasks and large-scale simulations, quantum computers specialize in problems involving exponential combinations (e.g., materials science, drug discovery, AI optimization). However, quantum systems currently require conventional computers to operate—a dependency that will intensify as they scale from today’s 100+ qubits to thousands or millions. The project envisions supercomputers acting as the “pianists” that play the quantum “piano.”

Twelve user groups are currently testing both systems. The project’s primary objective is to provide concrete answers to “What can quantum computers do *now*?” rather than speculating about future capabilities, while demonstrating practical advantages of tightly integrated hybrid computing for real-world scientific and industrial applications.


A RIKEN-led project is developing system software to tightly integrate quantum computers with supercomputers.

CRISPR vs Aging: What’s Actually Happening Right Now

🧠 VIDEO SUMMARY:
CRISPR gene editing in 2025 is no longer science fiction. From curing rare immune disorders and type 1 diabetes to lowering cholesterol and reversing blindness in mice, breakthroughs are transforming medicine today. With AI accelerating precision tools like base editing and prime editing, CRISPR not only cures diseases but also promises longer, healthier lives and maybe even longevity escape velocity.

0:00 – INTRO — First human treated with prime editing.
0:35 — The DNA Problem.
1:44 – CRISPR 1.0 — The Breakthrough.
3:19 – AI + CRISPR 2.0 & 3.0
4:47 – Epigenetic Reprogramming.
5:54 – From the Lab to the Body.
7:28 – Risks, Ethics & Power.
8:59 – The 2030 Vision.

👇 Don’t forget to check out the first three parts in this series:
Part 1 – “Longevity Escape Velocity: The Race to Beat Aging by 2030″
Part 2 – “Longevity Escape Velocity 2025: Latest Research Uncovered!“
Part 3 – “Longevity Escape Velocity: How AI is making us immortal by 2030!”

📌 Easy Insight simplifies the future — from longevity breakthroughs to mind-bending AI and quantum revolutions.

🔍 KEYWORDS:
longevity, longevity escape velocity, AI, artificial intelligence, quantum computing, supercomputers, simplified science, easy insightm, CRISPR 2025, CRISPR gene editing, CRISPR cures diseases, CRISPR longevity, prime editing 2025, base editing 2025, AI in gene editing, gene editing breakthroughs, gene therapy 2025, life extension 2025, reversing aging with CRISPR, CRISPR diabetes cure, CRISPR cholesterol PCSK9, CRISPR ATTR amyloidosis, CRISPR medical revolution, Easy Insight longevity.

👇 JOIN THE CONVERSATION:

Scientists Unveil the Most Realistic Black Hole Accretion Model Ever Created

Using cutting-edge algorithms and exascale supercomputers, researchers have created the most realistic simulations yet of matter flowing into black holes. Building on decades of research, a group of computational astrophysicists has reached an important breakthrough: they have created the most de

China’s ‘Darwin Monkey’ is the world’s largest brain-inspired supercomputer

Scientists in China have unveiled a supercomputer built on brain-like architecture — specifically, that of a monkey.

Called Darwin Monkey or “Wukong”, the system features over 2 billion artificial neurons and more than 100 billion synapses, putting it roughly on par with the neural structure of a macaque.

New ‘physics shortcut’ lets laptops tackle quantum problems once reserved for supercomputers and AI

Physicists have transformed a decades-old technique for simplifying quantum equations into a reusable, user-friendly “conversion table” that works on a laptop and returns results within hours.

/* */