БЛОГ

Archive for the ‘supercomputing’ category

Dec 15, 2024

Making Mars’s Moons: Supercomputers offer ‘Disruptive’ New Explanation

Posted by in categories: space, supercomputing

A NASA study using a series of supercomputer simulations reveals a potential new solution to a longstanding Martian mystery: How did Mars get its moons? The first step, the findings say, may have involved the destruction of an asteroid.

The research team, led by Jacob Kegerreis, a postdoctoral research scientist at NASA’s Ames Research Center in California’s Silicon Valley, found that an asteroid passing near Mars could have been disrupted—a nice way of saying “ripped apart”—by the red planet’s strong gravitational pull.

The paper is published in the journal Icarus.

Dec 14, 2024

Multi-fidelity modeling boosts predictive accuracy of fusion plasma performance

Posted by in categories: engineering, nuclear energy, particle physics, supercomputing

Fusion energy research is being pursued around the world as a means of solving energy problems. Magnetic confinement fusion reactors aim to extract fusion energy by confining extremely hot plasma in strong magnetic fields.

Its development is a comprehensive engineering project involving many advanced technologies, such as , reduced-activation materials, and beam and wave heating devices. In addition, predicting and controlling the confined plasma, in which numerous charged particles and electromagnetic fields interact in complex ways, is an interesting research subject from a physics perspective.

To understand the transport of energy and particles in confined plasmas, theoretical studies, using supercomputers, and experimental measurements of plasma turbulence are being conducted.

Dec 13, 2024

‘AI-at-scale’ method accelerates atomistic simulations for scientists

Posted by in categories: quantum physics, robotics/AI, supercomputing

Quantum calculations of molecular systems often require extraordinary amounts of computing power; these calculations are typically performed on the world’s largest supercomputers to better understand real-world products such as batteries and semiconductors.

Now, UC Berkeley and Lawrence Berkeley National Laboratory (Berkeley Lab) researchers have developed a new machine learning method that significantly speeds up by improving model scalability. This approach reduces the computing memory required for simulations by more than fivefold compared to existing models and delivers results over ten times faster.

Their research has been accepted at Neural Information Processing Systems (NeurIPS) 2024, a conference and publication venue in artificial intelligence and machine learning. They will present their work at the conference on December 13, and a version of their paper is available on the arXiv preprint server.

Dec 13, 2024

Google ‘Willow’ quantum chip has solved a problem the best supercomputer would have taken a quadrillion times the age of the universe to crack

Posted by in categories: quantum physics, supercomputing

Google’s new 105-qubit quantum processor has surpassed a key milestone first proposed in 1995.

Dec 12, 2024

Pete Shadbolt at MIT EmTech: Building the World’s First Useful Quantum Computer

Posted by in categories: quantum physics, supercomputing

Quantum computers hope to excel at solving problems that are too large, complex, or cumbersome for even the most powerful supercomputers, but many hurdles remain before they can be reliably put to commercial use. Here, we share an update on PsiQuantum’s approach, and recent progress towards useful, large-scale machines.

PsiQuantum co-founder \& Chief Scientific Officer Pete Shadbolt presents at the 2024 MIT EmTech conference in Cambridge, MA.

Dec 12, 2024

Google’s New Quantum Chip SHOCKED THE WORLD — 10 Million Times More Powerful!

Posted by in categories: biotech/medical, quantum physics, robotics/AI, supercomputing

Google’s new quantum computing chip, Willow, has set a groundbreaking standard by achieving unparalleled speed and precision, outperforming supercomputers in specific tasks by millions of times. This revolutionary chip enhances quantum error correction, making scalable quantum systems a reality and unlocking new possibilities for artificial intelligence, scientific research, and real-world problem-solving. Willow’s success marks a major milestone in the integration of quantum computing and AI, driving innovation across industries.

Don’t let AI leave you behind — get updates at https://airevolution.cc.

Continue reading “Google’s New Quantum Chip SHOCKED THE WORLD — 10 Million Times More Powerful!” »

Dec 10, 2024

10 Septillion Years vs 5 Minutes: Google’s “Mindboggling” New Chip | Vantage with Palki Sharma

Posted by in categories: biotech/medical, cybercrime/malcode, quantum physics, supercomputing

Humanity’s quest for answers has a new ally: Google’s Willow chip — a quantum chip that outpaces the fastest supercomputers by septillions of years! Imagine solving problems regular computers take years for—like creating life-saving medicines, predicting weather, or designing tech we haven’t dreamed of yet. But with great power comes challenges: high costs, logistics, and even risks to cybersecurity. The quantum revolution has begun, but the big question is—how will we use this power? Palki Sharma tells you.

Google | willow | quantum chip | firstpost | world news | news live | vantage | palki sharma | news.

Continue reading “10 Septillion Years vs 5 Minutes: Google’s ‘Mindboggling’ New Chip | Vantage with Palki Sharma” »

Dec 10, 2024

Google announces quantum computing chip breakthrough

Posted by in categories: nuclear energy, quantum physics, supercomputing

Google has unveiled a quantum computing chip, “Willow,” capable of performing tasks in minutes that would take supercomputers 10 septillion years. This breakthrough in error correction marks a significant step towards practical quantum computing, with potential applications in drug discovery, fusion energy, and climate change solutions.


Google on Monday showed off a new quantum computing chip that it said was a major breakthrough that could bring practical quantum computing closer to reality.

A custom chip called “Willow” does in minutes what it would take leading supercomputers 10 septillion years to complete, according to Google Quantum AI founder Hartmut Neven.

Continue reading “Google announces quantum computing chip breakthrough” »

Dec 9, 2024

Soft e-skin utilizes magnetic fields to independently sense three-axis forces

Posted by in categories: biotech/medical, cyborgs, mathematics, quantum physics, robotics/AI, supercomputing

Science and Technology: Google said its quantum computer, based on a computer chip called Willow, needed less than five minutes to perform a mathematical calculation that one of the world’s most powerful supercomputers could not complete in 10 septillion years, a length of time that exceeds the age of the known universe.


Electronic skins (e-skins) are flexible sensing materials designed to mimic the human skin’s ability to pick up tactile information when touching objects and surfaces. Highly performing e-skins could be used to enhance the capabilities of robots, to create new haptic interfaces and to develop more advanced prosthetics.

In recent years, researchers and engineers have been trying to develop e-skins with individual tactile units (i.e., taxels) that can accurately sense both normal (i.e., perpendicular) and shear (i.e., lateral) forces. While some of these attempts were successful, most existing multi-axis sensors are based on intricate designs or require complex fabrication and calibration processes, which limits their widespread deployment.

Continue reading “Soft e-skin utilizes magnetic fields to independently sense three-axis forces” »

Dec 9, 2024

New AI cracks complex engineering problems faster than supercomputers

Posted by in categories: robotics/AI, supercomputing

The latest AI news, analysis, and insight from VentureBeat, the most authoritative source on transformative technology.

Page 1 of 9712345678Last