Toggle light / dark theme

AlphaTensor–Quantum addresses three main challenges that go beyond the capabilities of AlphaTensor25 when applied to this problem. First, it optimizes the symmetric (rather than the standard) tensor rank; this is achieved by modifying the RL environment and actions to provide symmetric (Waring) decompositions of the tensor, which has the beneficial side effect of reducing the action search space. Second, AlphaTensor–Quantum scales up to large tensor sizes, which is a requirement as the size of the tensor corresponds directly to the number of qubits in the circuit to be optimized; this is achieved by a neural network architecture featuring symmetrization layers. Third, AlphaTensor–Quantum leverages domain knowledge that falls outside of the tensor decomposition framework; this is achieved by incorporating gadgets (constructions that can save T gates by using auxiliary ancilla qubits) through an efficient procedure embedded in the RL environment.

We demonstrate that AlphaTensor–Quantum is a powerful method for finding efficient quantum circuits. On a benchmark of arithmetic primitives, it outperforms all existing methods for T-count optimization, especially when allowed to leverage domain knowledge. For multiplication in finite fields, an operation with application in cryptography34, AlphaTensor–Quantum finds an efficient quantum algorithm with the same complexity as the classical Karatsuba method35. This is the most efficient quantum algorithm for multiplication on finite fields reported so far (naive translations of classical algorithms introduce overhead36,37 due to the reversible nature of quantum computations). We also optimize quantum primitives for other relevant problems, ranging from arithmetic computations used, for example, in Shor’s algorithm38, to Hamiltonian simulation in quantum chemistry, for example, iron–molybdenum cofactor (FeMoco) simulation39,40. AlphaTensor–Quantum recovers the best-known hand-designed solutions, demonstrating that it can effectively optimize circuits of interest in a fully automated way. We envision that this approach can accelerate discoveries in quantum computation as it saves the numerous hours of research invested in the design of optimized circuits.

AlphaTensor–Quantum can effectively exploit the domain knowledge (provided in the form of gadgets with state-of-the-art magic-state factories12), finding constructions with lower T-count. Because of its flexibility, AlphaTensor–Quantum can be readily extended in multiple ways, for example, by considering complexity metrics other than the T-count such as the cost of two-qubit Clifford gates or the qubit topology, by allowing circuit approximations, or by incorporating new domain knowledge. We expect that AlphaTensor–Quantum will become instrumental in automatic circuit optimization with new advancements in quantum computing.

The healthcare industry faces a significant shift towards digital health technology, with a growing demand for real-time and continuous health monitoring and disease diagnostics [1, 2, 3]. The rising prevalence of chronic diseases, such as diabetes, heart disease, and cancer, coupled with an aging population, has increased the need for remote and continuous health monitoring [4, 5, 6, 7]. This has led to the emergence of artificial intelligence (AI)-based wearable sensors that can collect, analyze, and transmit real-time health data to healthcare providers so that they can make efficient decisions based on patient data. Therefore, wearable sensors have become increasingly popular due to their ability to provide a non-invasive and convenient means of monitoring patient health. These wearable sensors can track various health parameters, such as heart rate, blood pressure, oxygen saturation, skin temperature, physical activity levels, sleep patterns, and biochemical markers, such as glucose, cortisol, lactates, electrolytes, and pH and environmental parameters [1, 8, 9, 10]. Wearable health technology includes first-generation wearable technologies, such as fitness trackers, smartwatches, and current wearable sensors, and is a powerful tool in addressing healthcare challenges [2].

The data collected by wearable sensors can be analyzed using machine learning (ML) and AI algorithms to provide insights into an individual’s health status, enabling early detection of health issues and the provision of personalized healthcare [6,11]. One of the most significant advantages of AI-based wearable health technology is to promote preventive healthcare. This enables individuals and healthcare providers to proactively address symptomatic conditions before they become more severe [12,13,14,15]. Wearable devices can also encourage healthy behavior by providing incentives, reminders, and feedback to individuals, such as staying active, hydrating, eating healthily, and maintaining a healthy lifestyle by measuring hydration biomarkers and nutrients.

This video takes a look at how future technology could change the Fermi Paradox. Asking if humanity is looking for life in the Universe in the wrong ways, or are we looking for the wrong things. Like trying to find smoke signals, in the age of fiber optics.

While the Drake Equation estimates how many civilizations could exist in the Universe, but what is the likelihood that humanity is even capable of detecting them.

Does there need to be another calculation, say the Detection Probability Equation. Showing what’s the likelihood that humanity is able to detect alien life at a given time, and solving the Fermi Paradox.

And does this create a new paradox. Because if future technology advancements increase the number of possible cosmic civilizations, could it also decrease humanity’s ability in detecting them — leading to the detection paradox.

Other topics covered in this sci-fi documentary video include: space telescopes, dyson spheres, the movie Contact by Carl Sagan, Interstellar movie and the time dilation effects, the great silence, the great filter, and solutions and theories for the Fermi Paradox.

PATREON

Snap a photo of your meal, and artificial intelligence instantly tells you its calorie count, fat content, and nutritional value—no more food diaries or guesswork.

This futuristic scenario is now much closer to reality, thanks to an AI system developed by NYU Tandon School of Engineering researchers that promises a new tool for the millions of people who want to manage their weight, diabetes and other diet-related health conditions.

The technology, detailed in a paper presented at the 6th IEEE International Conference on Mobile Computing and Sustainable Informatics, uses advanced deep-learning algorithms to recognize food items in images and calculate their nutritional content, including calories, protein, carbohydrates and fat.

Reinforcement learning (RL) has become central to advancing Large Language Models (LLMs), empowering them with improved reasoning capabilities necessary for complex tasks. However, the research community faces considerable challenges in reproducing state-of-the-art RL techniques due to incomplete disclosure of key training details by major industry players. This opacity has limited the progress of broader scientific efforts and collaborative research.

Researchers from ByteDance, Tsinghua University, and the University of Hong Kong recently introduced DAPO (Dynamic Sampling Policy Optimization), an open-source large-scale reinforcement learning system designed for enhancing the reasoning abilities of Large Language Models. The DAPO system seeks to bridge the gap in reproducibility by openly sharing all algorithmic details, training procedures, and datasets. Built upon the verl framework, DAPO includes training codes and a thoroughly prepared dataset called DAPO-Math-17K, specifically designed for mathematical reasoning tasks.

DAPO’s technical foundation includes four core innovations aimed at resolving key challenges in reinforcement learning. The first, “Clip-Higher,” addresses the issue of entropy collapse, a situation where models prematurely settle into limited exploration patterns. By carefully managing the clipping ratio in policy updates, this technique encourages greater diversity in model outputs. “Dynamic Sampling” counters inefficiencies in training by dynamically filtering samples based on their usefulness, thus ensuring a more consistent gradient signal. The “Token-level Policy Gradient Loss” offers a refined loss calculation method, emphasizing token-level rather than sample-level adjustments to better accommodate varying lengths of reasoning sequences. Lastly, “Overlong Reward Shaping” introduces a controlled penalty for excessively long responses, gently guiding models toward concise and efficient reasoning.

Researchers at the University of Gothenburg have developed a novel Ising machine that utilizes surface acoustic waves as an effective carrier of dense information flow. This approach enables fast, energy-efficient solutions to complex optimization problems, offering a promising alternative to conventional computing methods based on von-Neumann architecture. The findings are published in the journal Communications Physics.

Traditional computers can stumble when tackling —tasks of scheduling logistic operations, financial portfolio optimization and high frequency trading, optimizing communication channels in complex wireless networks, or predicting how proteins fold among countless structural possibilities.

In these cases, each added node—an additional logistic hub, network user, or molecular bond causes the number of possible configurations to explode exponentially. In contrast to linear or polynomial growth, an exponential increase in the number of possible solutions makes even the most powerful computers and algorithms lack the computational power and memory to evaluate every scenario in search of vanishingly small subsets representing satisfactorily optimal solutions.

The use of artificial intelligence (AI) scares many people as neural networks, modeled after the human brain, are so complex that even experts do not understand them. However, the risk to society of applying opaque algorithms varies depending on the application.

While AI can cause great damage in democratic elections through the manipulation of social media, in astrophysics it at worst leads to an incorrect view of the cosmos, says Dr. Jonas Glombitza from the Erlangen Center for Astroparticle Physics (ECAP) at Friedrich-Alexander Universität Erlangen-Nürnberg (FAU).

The astrophysicist uses AI to accelerate the analysis of data from an observatory that researches cosmic radiation.

A new study probing quantum phenomena in neurons as they transmit messages in the brain could provide fresh insight into how our brains function.

In this project, described in the Computational and Structural Biotechnology Journal, theoretical physicist Partha Ghose from the Tagore Centre for Natural Sciences and Philosophy in India, together with theoretical neuroscientist Dimitris Pinotsis from City St George’s, University of London and the MillerLab of MIT, proved that established equations describing the classical physics of brain responses are mathematically equivalent to equations describing quantum mechanics. Ghose and Pinotsis then derived a Schrödinger-like equation specifically for neurons.

Our brains process information via a vast network containing many millions of neurons, which can each send and receive chemical and electrical signals. Information is transmitted by nerve impulses that pass from one neuron to the next, thanks to a flow of ions across the neuron’s cell membrane. This results in an experimentally detectable change in electrical potential difference across the membrane known as the “action potential” or “spike”

Based on how an AI model transcribes audio into text, the researchers behind the study could map brain activity that takes place during conversation more accurately than traditional models that encode specific features of language structure — such as phonemes (the simple sounds that make up words) and parts of speech (such as nouns, verbs and adjectives).

The model used in the study, called Whisper, instead takes audio files and their text transcripts, which are used as training data to map the audio to the text. It then uses the statistics of that mapping to “learn” to predict text from new audio files that it hasn’t previously heard.

The future of AI is here—and it’s running on human brain cells! In a groundbreaking development, scientists have created the first AI system powered by biological neurons, blurring the line between technology and biology. But what does this mean for the future of artificial intelligence, and how does it work?

This revolutionary AI, known as “Brainoware,” uses lab-grown human brain cells to perform complex tasks like speech recognition and decision-making. By combining the adaptability of biological neurons with the precision of AI algorithms, researchers have unlocked a new frontier in computing. But with this innovation comes ethical questions and concerns about the implications of merging human biology with machines.

In this video, we’ll explore how Brainoware works, its potential applications, and the challenges it faces. Could this be the key to creating truly intelligent machines? Or does it raise red flags about the ethical boundaries of AI research?

What is Brainoware, and how does it work? What are the benefits and risks of AI powered by human brain cells? How will this technology shape the future of AI? This video answers all these questions and more. Don’t miss the full story—watch until the end!

#ai.
#artificialintelligence.
#ainews.

******************