Toggle light / dark theme

LMU researchers have shown that a particular type of immune cell acts more flexibly than previously thought—with the potential for new therapeutic approaches.

As part of the innate immune system, dendritic cells are the body’s first line of defense against infections. They detect pathogens and coordinate the . An international team led by Professor Barbara Schraml from LMU’s Biomedical Center has now carried out an extensive study of a new type of dendritic cell and uncovered its important role in the body’s immune response. The study is published in the journal Proceedings of the National Academy of Sciences.

As the researchers demonstrate, dendritic cells that are marked by expression of the transcription factor RORγt—so-called RORγt+ (DCs)—are found in many tissues. Moreover, they have been conserved across many species in the course of evolution, which suggests they have essential functions.

According to my recursive universe theory, we need Primordial Consciousness to explain the beginning of the first Universe. Please take a look at this YouTube video clip!


Consciousness is one of those topics that makes everyone uncomfortable—scientists, philosophers, and just about anyone who dares to question the nature of reality. Why? Because, despite all our technological advancements and scientific breakthroughs, we still don’t have a clear idea of what consciousness actually is or where it comes from. It’s the elephant in the room, the mystery that science can’t seem to crack. We can map the brain and understand its functions, but that still doesn’t explain why we experience thoughts, feelings, or self-awareness.

Some argue that consciousness is nothing more than the byproduct of biological processes, a lucky accident of evolution. But what if that’s not the whole story? What if consciousness isn’t a mere side effect of neurons firing but something far more fundamental—something that’s intertwined with the fabric of the universe itself?

Dr. Adomas Valantina: “Mars is still the Red Planet. It’s just that our understanding of why Mars is red has been transformed.”


What can Mars’ red hue that’s been observed for thousands of years teach us about when water existed on its surface potentially millions, or even billions, of years ago? This is what a recent study published in Nature Communications hopes to address as an international team of researchers investigated the connection between Mars’ red color and water interactions in the Red Planet’s ancient past. This study has the potential to help researchers better understand the formation and evolution of Mars and whether life could have existed at some point in its history.

For the study, the researchers used a combination of data obtained from Mars orbiters and laboratory experiments to ascertain the iron oxide mineral that is responsible for Mars’ red color and what relation this has to past liquid water that might have existed on the planet’s surface. This study builds upon past research that concluded the mineral hematite was responsible for Mars’ red color, which is a mineral that forms in water-free environments. However, the researchers for this study discovered that ferrihydrite is responsible for Mars’ red color, which is a mineral that forms in cold, watery environments.

“Mars is still the Red Planet,” said Dr. Adomas Valantina, who is a postdoctoral fellow at Brown University and lead author of the study. “It’s just that our understanding of why Mars is red has been transformed. The major implication is that because ferrihydrite could only have formed when water was still present on the surface, Mars rusted earlier than we previously thought. Moreover, the ferrihydrite remains stable under present-day conditions on Mars.”

What can an extremely hot Neptune-sized exoplanet teach scientists about exoplanetary weather? This is what a recent study published Nature Astronomy hopes to address as an international team of researchers investigated the extreme weather patterns on the “ultra-hot Neptune” exoplanet, LTT 9,779 b, which is tidally locked to its star and orbits so close to its star that it’s causing unique cloud and weather patterns. This study has the potential to help scientists better understand the formation and evolution of ultra-hot exoplanets and how these worlds remain intact.

“This planet provides a unique laboratory to understand how clouds and the transport of heat interact in the atmospheres of highly irradiated worlds,” said Louis-Philippe Coulombe, who is a PhD student at the University of Montreal’s (UdeM) Trottier Institute for Research on Exoplanets (IREx) and lead author of the study.

Located approximately 262 light-years from Earth, LTT 9,779 b orbits its star in only 0.8 days, or just over 19 hours, meaning its tidally locked orbit results in dayside temperatures of just below 2,000 degrees Celsius (3,600 degrees Fahrenheit) while its nightside temperatures are just over 1,000 degrees Celsius (1,800 degrees Fahrenheit).

Dr. Theofanopoulou studies neural circuits behind sensory-motor behaviors like speech and dance, aiming to develop drug-and arts-based therapies for brain disorders. Her brain imaging research reveals overlapping motor cortex regions controlling muscles for speech and dance, while transcriptomic studies show upregulation of the oxytocin gene pathway in key areas like the motor cortex and brainstem. Using zebra finches, Bengalese finches, white-rumped munias, and humans, she demonstrates oxytocin’s role in vocal production. She also developed genomic tools to apply these findings across vertebrates. Her future work explores oxytocin-based drugs and dance therapies to treat speech and motor deficits in brain disorders. Recorded on 02/14/2025. [3/2025] [Show ID: 40384]

Donate to UCTV to support informative & inspiring programming:
https://www.uctv.tv/donate.

Learn more about anthropogeny on CARTA’s website:
https://carta.anthropogeny.org/

More videos from: CARTA: The Origin of Love.

At the threshold of a century poised for unprecedented transformations, we find ourselves at a crossroads unlike any before. The convergence of humanity and technology is no longer a distant possibility; it has become a tangible reality that challenges our most fundamental conceptions of what it means to be human.

This article seeks to explore the implications of this new era, in which Artificial Intelligence (AI) emerges as a central player. Are we truly on the verge of a symbiotic fusion, or is the conflict between the natural and the artificial inevitable?

The prevailing discourse on AI oscillates between two extremes: on one hand, some view this technology as a powerful extension of human capabilities, capable of amplifying our creativity and efficiency. On the other, a more alarmist narrative predicts the decline of human significance in the face of relentless machine advancement. Yet, both perspectives seem overly simplistic when confronted with the intrinsic complexity of this phenomenon. Beyond the dichotomy of utopian optimism and apocalyptic pessimism, it is imperative to critically reflect on AI’s cultural, ethical, and philosophical impact on the social fabric, as well as the redefinition of human identity that this technological revolution demands.

Since the dawn of civilization, humans have sought to transcend their natural limitations through the creation of tools and technologies. From the wheel to the modern computer, every innovation has been seen as a means to overcome the physical and cognitive constraints imposed by biology. However, AI represents something profoundly different: for the first time, we are developing systems that not only execute predefined tasks but also learn, adapt, and, to some extent, think.

This transition should not be underestimated. While previous technologies were primarily instrumental—serving as controlled extensions of human will—AI introduces an element of autonomy that challenges the traditional relationship between subject and object. Machines are no longer merely passive tools; they are becoming active partners in the processes of creation and decision-making. This qualitative leap radically alters the balance of power between humans and machines, raising crucial questions about our position as the dominant species.

But what does it truly mean to “be human” in a world where the boundaries between mind and machine are blurring? Traditionally, humanity has been defined by attributes such as consciousness, emotion, creativity, and moral decision-making. Yet, as AI advances, these uniquely human traits are beginning to be replicated—albeit imperfectly—within algorithms. If a machine can imitate creativity or exhibit convincing emotional behavior, where does our uniqueness lie?

This challenge is not merely technical; it strikes at the core of our collective identity. Throughout history, humanity has constructed cultural and religious narratives that placed us at the center of the cosmos, distinguishing us from animals and the forces of nature. Today, that narrative is being contested by a new technological order that threatens to displace us from our self-imposed pedestal. It is not so much the fear of physical obsolescence that haunts our reflections but rather the anxiety of losing the sense of purpose and meaning derived from our uniqueness.

Despite these concerns, many AI advocates argue that the real opportunity lies in forging a symbiotic partnership between humans and machines. In this vision, technology is not a threat to humanity but an ally that enhances our capabilities. The underlying idea is that AI can take on repetitive or highly complex tasks, freeing humans to engage in activities that truly require creativity, intuition, and—most importantly—emotion.

Concrete examples of this approach can already be seen across various sectors. In medicine, AI-powered diagnostic systems can process vast amounts of clinical data in record time, allowing doctors to focus on more nuanced aspects of patient care. In the creative industry, AI-driven text and image generation software are being used as sources of inspiration, helping artists and writers explore new ideas and perspectives. In both cases, AI acts as a catalyst, amplifying human abilities rather than replacing them.

Furthermore, this collaboration could pave the way for innovative solutions in critical areas such as environmental sustainability, education, and social inclusion. For example, powerful neural networks can analyze global climate patterns, assisting scientists in predicting and mitigating natural disasters. Personalized algorithms can tailor educational content to the specific needs of each student, fostering more effective and inclusive learning. These applications suggest that AI, far from being a destructive force, can serve as a powerful instrument to address some of the greatest challenges of our time.

However, for this vision to become reality, a strategic approach is required—one that goes beyond mere technological implementation. It is crucial to ensure that AI is developed and deployed ethically, respecting fundamental human rights and promoting collective well-being. This involves regulating harmful practices, such as the misuse of personal data or the indiscriminate automation of jobs, as well as investing in training programs that prepare people for the new demands of the labor market.

While the prospect of symbiotic fusion is hopeful, we cannot ignore the inherent risks of AI’s rapid evolution. As these technologies become more sophisticated, so too does the potential for misuse and unforeseen consequences. One of the greatest dangers lies in the concentration of power in the hands of a few entities, whether they be governments, multinational corporations, or criminal organizations.

Recent history has already provided concerning examples of this phenomenon. The manipulation of public opinion through algorithm-driven social media, mass surveillance enabled by facial recognition systems, and the use of AI-controlled military drones illustrate how this technology can be wielded in ways that undermine societal interests.

Another critical risk in AI development is the so-called “alignment problem.” Even if a machine is programmed with good intentions, there is always the possibility that it misinterprets its instructions or prioritizes objectives that conflict with human values. This issue becomes particularly relevant in the context of autonomous systems that make decisions without direct human intervention. Imagine, for instance, a self-driving car forced to choose between saving its passenger or a pedestrian in an unavoidable collision. How should such decisions be made, and who bears responsibility for the outcome?

These uncertainties raise legitimate concerns about humanity’s ability to maintain control over increasingly advanced technologies. The very notion of scientific progress is called into question when we realize that accumulated knowledge can be used both for humanity’s benefit and its detriment. The nuclear arms race during the Cold War serves as a sobering reminder of what can happen when science escapes moral oversight.

Whether the future holds symbiotic fusion or inevitable conflict, one thing is clear: our understanding of human identity must adapt to the new realities imposed by AI. This adjustment will not be easy, as it requires confronting profound questions about free will, the nature of consciousness, and the essence of individuality.

One of the most pressing challenges is reconciling our increasing technological dependence with the preservation of human dignity. While AI can significantly enhance quality of life, there is a risk of reducing humans to mere consumers of automated services. Without a conscious effort to safeguard the emotional and spiritual dimensions of human experience, we may end up creating a society where efficiency outweighs empathy, and interpersonal interactions are replaced by cold, impersonal digital interfaces.

On the other hand, this very transformation offers a unique opportunity to rediscover and redefine what it means to be human. By delegating mechanical and routine tasks to machines, we can focus on activities that truly enrich our existence—art, philosophy, emotional relationships, and civic engagement. AI can serve as a mirror, compelling us to reflect on our values and aspirations, encouraging us to cultivate what is genuinely unique about the human condition.

Ultimately, the fate of our relationship with AI will depend on the choices we make today. We can choose to view it as an existential threat, resisting the inevitable changes it brings, or we can embrace the challenge of reinventing our collective identity in a post-humanist era. The latter, though more daring, offers the possibility of building a future where technology and humanity coexist in harmony, complementing each other.

To achieve this, we must adopt a holistic approach that integrates scientific, ethical, philosophical, and sociological perspectives. It also requires an open, inclusive dialogue involving all sectors of society—from researchers and entrepreneurs to policymakers and ordinary citizens. After all, AI is not merely a technical tool; it is an expression of our collective imagination, a reflection of our ambitions and fears.

As we gaze toward the horizon, we see a world full of uncertainties but also immense possibilities. The future is not predetermined; it will be shaped by the decisions we make today. What kind of social contract do we wish to establish with AI? Will it be one of domination or cooperation? The answer to this question will determine not only the trajectory of technology but the very essence of our existence as a species.

Now is the time to embrace our historical responsibility and embark on this journey with courage, wisdom, and an unwavering commitment to the values that make human life worth living.

__
Copyright © 2025, Henrique Jorge

[ This article was originally published in Portuguese in SAPO’s technology section at: https://tek.sapo.pt/opiniao/artigos/a-sinfonia-do-amanha-tit…exao-seria ]

A new breakthrough in cosmic mapping has unveiled the structure of a colossal filament, part of the vast cosmic web that connects galaxies.

Dark matter and gas shape these filaments, but their faint glow makes them hard to detect. By using advanced telescope technology and hundreds of hours of observation, astronomers have captured the most detailed image yet, bringing us closer to decoding the evolution of galaxies and the hidden forces shaping the universe.

The hidden order of the universe.

Ancient texts warn of love turning into hatred, as seen in stories like Cain and Abel or “Et tu, Brute?” This talk explores the neurobiology of hatred based on the biology of love: the oxytocin system, attachment networks, and biobehavioral synchrony, which mature through mother-infant bonding and later support group solidarity and out-group hostility. Using this model, we developed Tools of Dialogue© for Israeli and Palestinian youth. After 8 sessions, participants showed reduced hostility, increased empathy, hormonal changes (lower cortisol, higher oxytocin), and lasting attitudes of compromise. Seven years later, these changes supported their peacebuilding efforts, showing how social synchrony can transform hatred into reciprocity and cooperation. Recorded on 02/14/2025. [Show ID: 40386]

Donate to UCTV to support informative & inspiring programming:
https://www.uctv.tv/donate.

Learn more about anthropogeny on CARTA’s website:
https://carta.anthropogeny.org/

Explore More Humanities on UCTV

New research on the inner ear morphology of Neanderthals and their ancestors challenges the widely accepted theory that Neanderthals originated after an evolutionary event that implied the loss of part of their genetic diversity. The findings, based on fossil samples from Atapuerca (Spain) and Krapina (Croatia), as well as from various European and Western Asian sites have been published in Nature Communications.

Neanderthals emerged about 250,000 years ago from European populations—referred to as “pre-Neanderthals”—that inhabited the Eurasian continent between 500,000 and 250,000 years ago. It was long believed that no significant changes occurred throughout the evolution of Neanderthals, yet recent paleogenetic research based on DNA samples extracted from fossils revealed the existence of a drastic genetic diversity loss event between early Neanderthals (or ancient Neanderthals) and later ones (also referred to as “classic” Neanderthals).

Technically known as a “bottleneck,” this genetic loss is frequently the consequence of a reduction in the number of individuals in a population. Paleogenetic data indicate that the decline in took place approximately 110,000 years ago.

A new study by researchers at the Max Planck Institute for Evolutionary Biology (MPI-EB) sheds fresh light on one of the most debated concepts in biology: evolvability. The work provides the first experimental evidence showing how natural selection can shape genetic systems to enhance future capacity for evolution, challenging traditional perspectives on evolutionary processes.

The research is published in the journal Science. A related Perspective article also appears in Science.

The ability of organisms to generate adaptive genetic variation is crucial for evolutionary success, particularly in changing environments. The MPI-EB study investigates whether operates not merely as a “blind” process driven by but could actively favor mechanisms that channel mutations toward adaptive outcomes.