Oct 17, 2022

Scientists Augment Reality To Crack the Code of Quantum Systems

Posted by in categories: computing, quantum physics

Physicists are (temporarily) augmenting reality in order to crack the code of quantum systems.

Calculating the collective behavior of a molecule’s electrons is necessary to predict a material’s properties. Such predictions could one day help scientists create novel drugs or create materials with desirable qualities like superconductivity. The issue is that electrons may become ‘quantum mechanically’ entangled with one another, which means they can no longer be treated individually. For any system with more than a few particles, the entangled network of connections becomes outrageously difficult for even the most powerful computers to unravel directly.

Now, quantum physicists from the École Polytechnique Fédérale de Lausanne (EPFL) in Switzerland and the Flatiron Institute’s Center for Computational Quantum Physics (CCQ) in New York City have found a workaround. By adding extra “ghost” electrons in their computations that interact with the system’s actual electrons, they were able to simulate entanglement.

Comments are closed.