Nov 9, 2022

Theorists React to Potential Signal in Dark Matter Detector

Posted by in categories: cosmology, particle physics

A tantalizing signal reported by the XENON1T dark matter experiment has sparked theorists to investigate explanations involving new physics.

On June 16, 2020, the collaboration running XENON1T—one of the world’s most sensitive dark matter detectors—reported a signal it couldn’t explain (see today’s accompanying article, Viewpoint: Dark Matter Detector Delivers Enigmatic Signal). The signal has yet to reach the “5-sigma” bar for discovery, and a mundane explanation could still be the culprit. But theorists have been quick to explore whether exotic particles or interactions might be involved. Physical Review Letters followed a special procedure to get a coherent expert review of the proposals it received. Now, the journal is publishing five papers that represent the breadth of theories being pursued.

All of the reported scenarios explain two aspects of the signal, which was produced in the huge vat of ultrapure xenon that makes up XENON1T’s detector. First, the signal looks like it came from particles that collided mostly with the xenon atoms’ electrons. And second, each of these interactions dumped a few keV into the atom.

Comments are closed.