БЛОГ

Sep 27, 2023

Hugo de Garis — Innovating Beyond the Nanoscale, Femtometer Scale Technology

Posted by in categories: computing, engineering, military, nanotechnology, particle physics

Femtotech: Computing at the femtometer scale using quarks and gluons.
How the properties of quarks and gluons can be used (in principle) to perform computation at the femtometer (10^−15 meter) scale.

I’ve been thinking on and off for two decades about the possibility of a femtotech. Now that nanotech is well established, and well funded, I feel that the time is right to start thinking about the possibility of a femtotech.

You may ask, “What about picotech?” — technology at the picometer (10-12m) scale. The simple answer to this question is that nature provides nothing at the picometer scale. An atom is about 10–10 m in size.

The next smallest thing in nature is the nucleus, which is about 100,000 times smaller, i.e., 10–15 m in size — a femtometer, or “fermi.” A nucleus is composed of protons and neutrons (i.e., “nucleons”), which we now know are composed of 3 quarks, which are bound (“glued”) together by massless (photon-like) particles called “gluons.”

Hence if one wanted to start thinking about a possible femtotech, one would probably need to start looking at how quarks and gluons behave, and see if these behaviors might be manipulated in such a way as to create a technology, i.e., computation and engineering (building stuff).

In this essay, I concentrate on the computation side, since my background is in computer science. Before I started ARCing (After Retirement Careering), I was a computer science professor who gave himself zero chance of getting a grant from conservative NSF or military funders in the U.S. to speculate on the possibilities of a femtotech. But now that I’m no longer a “wager,” I’m free to do what I like, and can join the billion strong “army” of ARCers, to pursue my own passions.

Leave a reply