While the nanobio interaction is crucial in determining nanoparticles’ in vivo fate, a previous work on investigating nanoparticles’ interaction with biological barriers is mainly carried out in a static state. Nanoparticles’ fluid dynamics that share non-negligible impacts on their frequency of encountering biological hosts, however, is seldom given attention. Herein, inspired by badmintons’ unique aerodynamics, badminton architecture Fe3O4&mPDA (Fe3O4 = magnetite nanoparticle and mPDA = mesoporous polydopamine) Janus nanoparticles have successfully been synthesized based on a steric-induced anisotropic assembly strategy. Due to the “head” Fe3O4 having much larger density than the mPDA “cone”, it shows an asymmetric mass distribution, analogous to real badminton.
Comments are closed.