The properties of nanoribbon edges are important for their applications in electronic devices, sensors, and catalysts. A group of scientists from Japan and China studied the mechanical response of single-layer molybdenum disulfide nanoribbons with armchair edges using in situ transmission electron microscopy.
They showed that the nanoribbon Young’s modulus varied inversely with its width below the width of 3nm, indicating a higher bond stiffness for the armchair edges. Their work, published in the journal Advanced Science, was co-authored by Associate Professor Kenta Hongo and Professor Ryo Maezono from JAIST and Lecturer Chunmeng Liu and Lecturer Jiaqi Zhang from Zhengzhou University, China.
Sensors have become ubiquitous in the modern world, with applications ranging from detecting explosives, measuring physiological spikes of glucose or cortisol non-invasively to estimating greenhouse gas levels in the atmosphere.
Comments are closed.