Toggle light / dark theme

In the last decade, the advances made into the reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) led to great improvements towards their use as models of diseases. In particular, in the field of neurodegenerative diseases, iPSCs technology allowed to culture in vitro all types of patient-specific neural cells, facilitating not only the investigation of diseases’ etiopathology, but also the testing of new drugs and cell therapies, leading to the innovative concept of personalized medicine. Moreover, iPSCs can be differentiated and organized into 3D organoids, providing a tool which mimics the complexity of the brain’s architecture. Furthermore, recent developments in 3D bioprinting allowed the study of physiological cell-to-cell interactions, given by a combination of several biomaterials, scaffolds, and cells.

These small particles that look like dust to the naked eye are highly detailed and can be customized to suit a wide variety of needs ranging from microfluidics to vaccine delivery and even microelectronics, a press release has said.

3D printing or additive manufacturing at a macroscale level has matured at the market level, where items like shoes, hearing aids, and even household goods can be made using this technique.

Tasked with building a new data center in an urban area of Germany, the team behind the Wave House harnessed the benefits of 3D printing technology to inject a sense of style into the unglamorous world of cloud-computing infrastructure, creating Europe’s largest 3D-printed building in the process.

The Wave House is located in Heidelberg and was designed by SSV and Mense Korte, and created by Peri 3D Construction for developer KrausGruppe. It measures 600 sq m (6,600 sq ft). As mentioned, its unusual appearance comes from an attempt to spice up what could otherwise have been a rather boring building.

“Due to the typical absence of windows and large openings in all or the main areas of data centers, for safety and other reasons, data centers tend to look quite dull and uninspiring,” explained a press release by COBOD. “As long as such data centers are placed far outside the cities this problem is perhaps of less concern, but the trend towards making data centers more in the vicinity of the users and therefore locate them in suburban areas and cities has created a need to make the data centers more visually appealing.

Science: In future maybe wounds be cured and closed in seconds by 3D printing regeneration.


Fat tissue holds the key to 3D printing layered living skin and potentially hair follicles, according to researchers who recently harnessed fat cells and supporting structures from clinically procured human tissue to precisely correct injuries in rats. The advancement could have implications for reconstructive facial surgery and even hair growth treatments for humans.

The team’s findings were published March 1 in Bioactive Materials. The U.S. Patent and Trademark Office granted the team a patent in February for the bioprinting technology it developed and used in this study.

“Reconstructive surgery to correct trauma to the face or head from injury or disease is usually imperfect, resulting in scarring or permanent hair loss,” said Ibrahim T. Ozbolat, professor of engineering science and mechanics, of and of neurosurgery at Penn State, who led the that conducted the work.

Inspired by the color-changing ability of chameleons, researchers have developed a sustainable technique to 3D-print multiple, dynamic colors from a single ink.

“By designing new chemistries and printing processes, we can modulate structural color on the fly to produce color gradients not possible before,” said Ying Diao, an associate professor of chemistry and chemical and biomolecular engineering at the University of Illinois Urbana-Champaign and a researcher at the Beckman Institute for Advanced Science and Technology.

The study appears in the journal PNAS.

The proliferation of wearable devices—from smart watches to AR glasses—necessitates ever-smaller on-board energy solutions that can deliver bursts of power while remaining unobtrusive.


Scientists leverage additive-free 3D printing process to construct exceptionally customizable and high-performing graphene-based micro-supercapacitors tailored for on-chip energy storage.

Imagine being able to build an entire dialysis machine using nothing more than a 3D printer.

This could not only reduce costs and eliminate manufacturing waste, but since this machine could be produced outside a factory, people with limited resources or those who live in remote areas may be able to access this more easily.

While multiple hurdles must be overcome to develop that are entirely 3D printed, a team at MIT has taken an important step in this direction by demonstrating fully 3D-printed, three-dimensional solenoids.