Toggle light / dark theme

10 Coolest 3D Printed Cars

Believe it or not, 3D printed cars are a reality.

Although you won’t be able to find 3D printed cars at your local car dealership just yet, there are some very interesting concepts out there that do a great job of presenting the possibilities of 3D printing in the automotive industry. They even represent the first steps towards mass-produced 3D printed cars.

Here are 10 of the coolest cars that are 3D printed or contain 3D printed parts. Just keep in mind that most of them aren’t available for purchase.

Czinger 21C: the world’s first 3D printed hypercar | Top Gear

The Czinger 21C is a 1,233bhp 3D printed hypercar complete with a turbo V8 revving to 11,000rpm, a 1+1 layout and $1.7m price tag. Oh, and the big news is it’s 3D printed. Well, large sections of the chassis are, paving the way for a revolutionary new car manufacturing process that could change… everything. It’s mind-blowing stuff, so let Jack Rix be your guide around California’s Koenigsegg rival.

WATCH MORE TOP GEAR:
http://bit.ly/TG-S27
http://bit.ly/StigCams
http://bit.ly/TG-Mercedes

MORE ABOUT TOP GEAR:
Want to watch a bit of Top Gear on the internet? Welcome to the most comprehensive collection of official clips you’ll find on YouTube. Whether you’re searching for a caravan challenge, Ken Block in the Hoonicorn, cars versus fighter jets, Stig power laps or the latest Chris Harris Drives, you can find all the iconic films here.

Want to share your views with the team? Join our BBC Studios Voice: https://www.bbcstudiosvoice.com/register

This is a commercial channel from BBC Studios. Service & Feedback https://www.bbcstudios.com/contact/contact-us/

Self-repairing shoes may be a reality thanks to 3D-printed rubber

Circa 2019 face_with_colon_three


Shoes will invariably wear out with enough use, but scientists might have found a way to delay the shopping trip for their replacements. A USC team has created a self-healing 3D-printed rubber that could be ideal for footwear, tires and even soft robotics. The effort involves 3D printing the material with photopolymerization (solidifying a resin with light) while introducing an oxidizer at just the right ratio to add self-healing properties without slowing down the solidifying process.

Fig. 1: Additive manufacturing of self-healing elastomers.

Oak Ridge National Laboratory is developing a 3D printed nuclear reactor core

Researchers at the US Department of Energy (DOE)’s Oak Ridge National Laboratory (ORNL) are developing a nuclear reactor core using 3D printing.

As part of its Transformational Challenge Reactor (TCR) Demonstration Program, which aims to build an additively manufactured microreactor, ORNL has refined its design of the reactor core, while also scaling up the additive manufacturing process necessary to build it. Additionally, the researchers have established qualification methods to confirm the consistency and reliability of the 3D printed components used in creating the core.

“The nuclear industry is still constrained in thinking about the way we design, build and deploy nuclear energy technology,” comments ORNL Director Thomas Zacharia.

Rubber “exoskeleton” lets liquid metal structures retain their shape

This could allow for nanosuit armor :3.


Imagine if there were a metallic device that could be transported all squished down into a compact ball, but that would automatically “bloom” out into its useful form when heated. Well, that may soon be possible, thanks to a newly developed liquid metal lattice.

Led by Asst. Prof. Pu Zhang, a team of scientists at New York’s Bingham University started by 3D printing lattice-type structures out of an existing metal known as Field’s alloy. Named after its inventor, chemist Simon Quellen Field, the alloy consists of a mixture of bismuth, indium and tin. It also melts when heated to just 62 °C (144 °F), but then re-solidifies upon cooling.

Utilizing a combination of vacuum casting and a technique known as conformal coating, those alloy lattices were subsequently covered with a layer of rubber. As long as the ambient temperature stayed below 62 degrees, the resulting structures remained rigid.

Community First! Village 3D-Printed Affordable Homes

At 500 square feet, ICON’s stylish new structure was 3D-printed over the course of several days—but it only took 27 hours of labor to construct. The building will serve as a welcome center at Austin’s new Community First! Village—a 51-acre development that will provide affordable housing to men and women coming out of chronic homelessness. Six new 3D-printed homes will be added to the village by the end of this year—and ICON says that they can be built at significantly less cost than conventional homes.


A year ago, ICON proved it could 3D print a home you’d actually want to live in. Now, it’s building a cluster of 3D-printed homes for the homeless.

Engineers, medical team design 3D-printed ventilator that requires no electricity

A research collaboration and ensuing friendship between a trauma surgeon in Oregon and a handful of engineers in Florida has resulted in a new ventilator design that requires no electricity and could be a game-changer during the COVID-19 pandemic.

Albert Chi, who specializes in critical care and prosthetics, was keeping a close eye on COVID-19 during the early days. He immediately began working with his team at Oregon Health and Science University to develop a new, easy way to replicate ventilators that could be deployed anywhere. Specializing in trauma, Chi as a retired commander of the U.S. Navy Reserve and well versed in extreme conditions.

When Chi had a design, he called his friend and clinical-trial collaborator Albert Manero CEO and co-founder of Limbitless Solutions in Orlando, Florida.

A new flexible piezoelectric composite for 3D printing

Researchers at Peking University, Southern University of Science and Technology and the University of Jinan in China have recently designed a ceramic-polymer composite that can be used to print complex 3D grid architectures. This composite, first presented in a paper published in Nano Energy, was found to exhibit a number of desirable properties, including high flexibility and a high electromechanical energy conversion rate.

Piezoelectric ceramic materials, such as Pb(Zr, Ti)O3 (PZT) typically have remarkable electromechanical energy conversion capabilities. However, most of these materials are inherently rigid, which makes them far from ideal for the fabrication of flexible electronics.

“Normally, are brittle, therefore, they are not suitable for integration into flexible electronics directly,” Shuxiang Dong, one of the researchers who carried out the study, told TechXplore. “We wanted to develop a 3D-printed, soft piezoelectric ceramic composite material that is a heat-curable polymer exhibiting mechanical flexibility and a large electromechanical voltage in response to environmental mechanical vibrations or force stimuli. Luckily, we made it, and our composite has great potential to be used for future soft sensors.”

/* */