БЛОГ

Archive for the ‘3D printing’ category: Page 9

Nov 13, 2022

Uganda’s New Satellite Contains Equipment to 3D Print Human Tissue in Orbit

Posted by in categories: 3D printing, bioprinting, biotech/medical, food, security

With the help of NASA and Japan, Uganda has officially become a spacefaring nation — and its newly-launched PearlAfricaSat-1 craft has some pretty nifty tech onboard.

As the Uganda-based Nile Post reports, the satellite launched out of NASA’s Mid-Atlantic Regional Spaceport facility in Virginia on the morning of November 7 will not only provide important agricultural and security monitoring features for the developing nation, but will also conduct experiments involving the 3D printing of human tissue.

Per the Ugandan news site, the tissues printed on PearlAfricaSat-1 will be used in research into the effects microgravity has on ovary function — and as Quartz notes in its write-up of the NASA and Japan-supported mission, the microgravity aspect of the experiments is key because “bioprinting” human organs is difficult to achieve with Earth’s gravity.

Nov 8, 2022

Inside NASA’s most mind-blowing Mars base designs — including inflatable homes

Posted by in categories: 3D printing, space

THE most impressive designs for near-future Mars bases have finally been revealed.

These elaborate celestial plans are the difference between human life surviving on Mars – and thriving.

When it comes to planning how to live on a planet like Mars, 3D printing has provided scientists with the easiest way of navigating an environment that has similarities, but ultimately boasts a vastly different environment from Earth.

Nov 5, 2022

Micro 4D Printing Builds on Programmable Matter

Posted by in categories: 3D printing, 4D printing, biotech/medical, chemistry, robotics/AI

Objects that can transform themselves after they’ve been built could have a host of useful applications in everything from robotics to biomedicine. A new technique that combines 3D printing and an ink with dynamic chemical bonds can create microscale structures of alterable sizes and properties.

Nov 4, 2022

Water-Braiding Technology Invented For Next Generation Wireless Devices

Posted by in categories: 3D printing, mobile phones, nanotechnology

To produce the next generation of high-frequency antennae for 5G, 6G and other wireless devices, a team at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) has invented the machine and manufacturing technique to manipulate microscopic objects using 3D printing and braid them into filaments a mere micrometre in diameter.

How small is this? One human hair varies in diameter between 20 and 200 micrometres from tip to root. Spider web silk can vary from 3 to 8 micrometres in diameter. So that’s teeny tiny. And for us to pack in the many antennae that go into mobile phone technology today, the smaller the better.

Continue reading “Water-Braiding Technology Invented For Next Generation Wireless Devices” »

Oct 31, 2022

Engineering students have developed a 3D-printed prosthetic arm for people with disabilities

Posted by in categories: 3D printing, biotech/medical, cyborgs, engineering

More affordable than the regular ones.

The Arm2u biomedical engineering team from the Barcelona School of Industrial Engineering (ETSEIB) of the Universitat Politècnica de Catalunya designed and constructed a configurable transradial prosthesis that responds to the user’s nerve impulses using 3D printing technology.

Arm2u is a prosthesis that can replace a missing arm below the elbow. It can be controlled with myoelectric control, which means that it is controlled by the natural electrical signals produced by muscle contraction.

Continue reading “Engineering students have developed a 3D-printed prosthetic arm for people with disabilities” »

Oct 28, 2022

Is the future of solid-state batteries 3D-printed?

Posted by in categories: 3D printing, energy

The race to create a solid-state battery that could compete with today’s lithium-ion cells is heating up. In the past few years, there’s been a lot of R&D around solid electrolytes that promise to be safer and more powerful. In this video, we visit Sakuú, a company that doesn’t just want to make solid-state batteries, they also want to 3D-print them.

0:00 Intro.
0:29 Battery basics feat. a potato.
1:29 Lithium-ion batteries 101
2:18 What is a solid-state battery?
3:28 Intro to Sakuú
4:00 Why 3D-printing?
5:35 3D-printing prototype.
6:25 Customized battery shapes.
7:34 Challenges of total reinvention.
8:09 Looking forward.

Continue reading “Is the future of solid-state batteries 3D-printed?” »

Oct 25, 2022

Compact and flexible fiber design ensures efficient focusing and razor-sharp images thanks to 3D printing

Posted by in categories: 3D printing, biotech/medical

An interdisciplinary team of researchers from Korea, Australia, Great Britain, and Germany—with participation of Leibniz Institute of Photonic Technology (Leibniz IPHT)—were able for the first time to optimize an optical glass fiber in such a way that light of different wavelengths can be focused extremely precisely. The level of accuracy is achieved by 3D nanoprinting of an optical lens applied to the end of the fiber.

This opens up new possibilities for applications in microscopy and endoscopy as well as in laser therapy and sensor technology. The researchers published their results in the journal Nature Communications.

Lenses at the end faces of optical fibers currently used in endoscopy for medical diagnostics have the disadvantage of chromatic aberration. This imaging error of optics, caused by the fact that light of different wavelengths, i.e., different spectral colors, is shaped and refracted differently, leads to a shift in the focal point and thus to blurring in imaging over a wide range of wavelengths. Achromatic lenses, which can minimize these optical aberrations, provide a remedy.

Oct 20, 2022

3D Printing With A Drone Swarm?

Posted by in categories: 3D printing, bioengineering, drones, robotics/AI

The goal is to enable the printing of large, complex shaped structures, on any surface, using a swarm of drones, each depositing whatever material is required. It’s a bit like a swarm of wasps building a nest, into whatever little nook they come across, but on the wing.


Even in technical disciplines such as engineering, there is much we can still learn from nature. After all, the endless experimentation and trials of life give rise to some of the most elegant solutions to problems. With that in mind, a large team of researchers took inspiration from the humble (if rather annoying) wasp, specifically its nest-building skills. The idea was to explore 3D printing of structures without the constraints of a framed machine, by mounting an extruder onto a drone.

Continue reading “3D Printing With A Drone Swarm?” »

Oct 14, 2022

Deep learning makes X-ray CT inspection of 3D-printed parts faster, more accurate

Posted by in categories: 3D printing, robotics/AI

A new deep-learning framework developed at the Department of Energy’s Oak Ridge National Laboratory is speeding up the process of inspecting additively manufactured metal parts using X-ray computed tomography, or CT, while increasing the accuracy of the results. The reduced costs for time, labor, maintenance and energy are expected to accelerate expansion of additive manufacturing, or 3D printing.

“The scan speed reduces costs significantly,” said ORNL lead researcher Amir Ziabari. “And the quality is higher, so the post-processing analysis becomes much simpler.”

Continue reading “Deep learning makes X-ray CT inspection of 3D-printed parts faster, more accurate” »

Oct 14, 2022

3D printing plant cells shows promise for studying cell function

Posted by in categories: 3D printing, bioprinting

A new study from North Carolina State University shows a reproducible way of studying cellular communication among varied types of plant cells by “bioprinting” these cells via a 3D printer. Learning more about how plant cells communicate with each other—and with their environment—is key to understanding more about plant cell functions and could ultimately lead to creating better crop varieties and optimal growing environments.

The researchers bioprinted cells from the model plant Arabidopsis thaliana and from soybeans to study not just whether plant cells would live after being bioprinted—and for how long—but also to examine how they acquire and change their identity and function.

“A plant root has a lot of different cell types with specialized functions,” said Lisa Van den Broeck, an NC State postdoctoral researcher who is the first author of a paper describing the work. “There are also different sets of genes being expressed; some are cell-specific. We wanted to know what happens after you bioprint and place them into an environment that you design: Are they alive and doing what they should be doing?”

Page 9 of 131First678910111213Last