Toggle light / dark theme

An exploration of the technological singularity and whether it will happen and what implications it has on astrobiology and solving the Fermi Paradox.

My new clips and live channel:

https://www.youtube.com/channel/UCwwuMqY1SXZhTB5hIFFUmlg.

My Patreon Page:

https://www.patreon.com/johnmichaelgodier.

My Event Horizon Channel:

Work is afoot to build the necessary instruments to do so.

ETH Zurich, the Swiss federal institute, recently opened its new Center for the Origin and Prevalence of Life, an interdisciplinary institute to analyze the current and future observations of the Earth and the universe. During the opening ceremony, astrophysicist Sasha Quanz said that we might be able to detect the presence of life outside our solar system in the next 25 years, Space.com.


IStock/oorka.

The claim might sound too ambitious, especially when, after years of work, we are still not sure if planets inside the solar system can support life. However, Quanz recollected that it was only the year 1995 that we had discovered the first planet outside our solar system. In less than three decades, we now have a potential list of 100 billion exoplanets to be discovered in the Milky Way galaxy alone.

This places Drake in the company of towering physicists with equations named after them, including James Clerk Maxwell and Erwin Schrödinger. Unlike those, Drake’s equation does not encapsulate a law of nature. Instead, it combines some poorly known probabilities into an informed estimate.

Whatever reasonable values you feed into the equation (see image below), it is hard to avoid the conclusion that we shouldn’t be alone in the galaxy. Drake remained a proponent and a supporter of the search for extraterrestrial life throughout his days, but has his equation taught us anything?

Drake’s equation may look complicated, but its principles are rather simple. It states that in a galaxy as old as ours, the number of civilizations that are detectable by virtue of them broadcasting their presence must equate to the rate at which they arise, multiplied by their average lifetime.

SUBSCRIBE to “Science Time”: https://www.youtube.com/sciencetime24

Why does our universe appear so exquisitely tuned to create the conditions necessary for life? This is a question that has troubled cosmologists and physicists for decades.

Brian Greene explains how the mind-boggling idea of a multiverse may hold the answer to the puzzle. According to Greene, if there are infinitely many universes, it shouldn’t be too surprising that one ended up with the right conditions for life.

We may seriously underestimate life’s natural tendency to behave in a particular way under different laws, constants, and boundary conditions because we are biased to assume that all possible kinds of life will resemble life as we know it.

Scientists are constantly pushing the boundaries of our knowledge. However, the multiverse theories have drawn criticism from some scientists, who warn of the danger of speculation beyond what observations can tell us.

#universe #multiverse #science.

It’s difficult to describe the state of the universe’s affairs back when the whole of everything was compressed to a size slightly smaller than the period at the end of this sentence — on account that the concepts of time and space literally didn’t yet apply. But that challenge hasn’t stopped pioneering theoretical astrophysicist, Dr. Laura Mersini-Houghton, from seeking knowledge at the edge of the known universe and beyond. In her new book, Before the Big Bang, Mersini-Houghton recounts her early life in communist Albania, her career as she rose to prominence in the male-dominated field of astrophysics and discusses her research into the multiverse which could fundamentally rewrite our understanding of reality.

Excerpted from Before The Big Bang: The Origin of the Universe and What Lies Beyond by Laura Mersini-Houghton. Published by Mariner Books. Copyright © 2022 by Laura Mersini-Houghton. All rights reserved.

Scientific investigations of problems like the creation of the universe, which we can neither observe nor reproduce and test in a lab, are similar to detective work in that they rely on intuition as well as evidence. Like a detective, as pieces of the puzzle start falling into place, researchers can intuitively sense the answer is close. This was the feeling I had as Rich and I tried to figure out how we could test our theory about the multiverse. Rationally, it seemed like a long shot, but intuitively, it seemed achievable.

Start listening with a 30-day Audible trial and your first audiobook is free. Visit http://www.audible.com/isaac or text “isaac” to 500–500.
The idea that some mimic might steal your identity and replace you, or takeover your mind, is terrifying. But could we encounter aliens that were able to do this?

Visit our Website: http://www.isaacarthur.net.
Support us on Patreon: https://www.patreon.com/IsaacArthur.
Support us on Subscribestar: https://www.subscribestar.com/isaac-arthur.
Facebook Group: https://www.facebook.com/groups/1583992725237264/
Reddit: https://www.reddit.com/r/IsaacArthur/
Twitter: https://twitter.com/Isaac_A_Arthur on Twitter and RT our future content.
SFIA Discord Server: https://discord.gg/53GAShE

Listen or Download the audio of this episode from Soundcloud: Episode’s Audio-only version: https://soundcloud.com/isaac-arthur-148927746/alien-impostors-doppelgangers.
Episode’s Narration-only version: https://soundcloud.com/isaac-arthur-148927746/alien-impostor…ation-only.

Credits:
Alien Civilizations: Alien Impostors & Doppelgangers.
Science & Futurism with Isaac Arthur.
Episode 359a, September 11, 2022
Written, Produced & Narrated by Isaac Arthur.

Editors:
David McFarlane.

Graphics:

Drake’s equation may look complicated, but its principles are really rather simple. It states that, in a galaxy as old as ours, the number of civilizations that are detectable by virtue of them broadcasting their presence must equate to the rate at which they arise, multiplied by their average lifetime.

Putting a value on the rate at which civilizations occur might seem to be guesswork, but Drake realized that it can be broken down into more tractable components.

He stated that the total rate is equal to the rate at which suitable stars are formed, multiplied by the fraction of those stars that have planets. This is then multiplied by the number of planets that are capable of bearing life per system, times the fraction of those planets where life gets started, multiplied by the fraction of those where life becomes intelligent, times the fraction of those that broadcast their presence.

Water is the one thing all life on Earth needs, and the cycle of rain to river to ocean to rain is an essential part of what keeps our planet’s climate stable and hospitable. When scientists talk about where to search for signs of life throughout the galaxy, planets with water are always at the top of the list.

A new study published in Science suggests that many more planets may have large amounts of water than previously thought—as much as half water and half rock. The catch? All that water is probably embedded in the rock, rather than flowing as oceans or rivers on the surface.

“It was a surprise to see evidence for so many water worlds orbiting the most common type of star in the galaxy,” said Rafael Luque, first author on the new paper and a postdoctoral researcher at the University of Chicago. “It has enormous consequences for the search for .”