БЛОГ

Archive for the ‘bioengineering’ category: Page 18

Jan 2, 2024

EARD 2023 Panel Discussion: Is Aging Truly Reversible?

Posted by in categories: bioengineering, neuroscience, quantum physics

A nice talk. At 18 minutes dude says healthspan is way more important than lifespan. Never mind that large sign behind him that says lifespan. But, not to knock it too much, yes healthspan is important too.


Dr. Oliver Medvedik, Dr. Aubrey de Grey, Dr. Peter Fedichev, Dr. Hanadie Yousef, Reason, and Dr. Hans Keirstead debate whether or not aging is truly reversible at the Longevity+DeSci Summit NYC (EARD 2023). \
\
Summary\
▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀\
Dr. Oliver Medvedik earned his Ph.D. at Harvard Medical School in the Biomedical and Biological Sciences program. Oliver is presently the Director of the Kanbar Center for Biomedical Engineering at The Cooper Union, where he carries out research on improving gene targeting in mammalian cells, enzymatic oligonucleotide synthesis, and other bioengineering projects with undergraduate and graduate students at the Albert Nerken School of Engineering. Dr. Medvedik is also the co-founder of the community biotechnology laboratory, Genspace, located in Brooklyn, where he continues to serve on its board of directors. In addition, Dr. Medvedik is also co-founder and vice-president of the non-profit organization LEAF (Life Extension Advocacy Foundation), where he serves on the board of directors.\
\
➡️: / oliver-medvedik-4067016 \
\
Dr. Aubrey de Grey is a pillar of the longevity community. Dr. de Grey works on the development of medical innovations that can postpone all forms of age-related ill-health. His main focus is on rejuvenation: that is, the active repair of the various types of molecular and cellular damage which eventually cause age-related disease and disability, as opposed to the mere retardation of the accumulation of such damage. He is currently the President and Chief Scientific Officer of the Longevity Escape Velocity (LEV) Foundation. \
\
➡️: https://www.levf.org\
\
Dr. Peter Fedichev is an entrepreneur and scientist who co-founded three biotech companies: Quantum Pharmaceuticals, a drug discovery company, and Gero, a longevity startup, and GlyNeura, a biotech-pharma company aiming to cure Neurodegenerative Diseases. His scientific background lies in the fields of condensed matter physics, biophysics, and bioinformatics. His dream is to beat aging and experience life in space.\
\
➡️: https://gero.ai\
\
Dr. Handie Yousef is a leading expert on the biology of aging and mechanisms underlying tissue degeneration with over two decades of experience in biomedical research. In 2018, she launched Juvena Therapeutics, a venture-backed biotechnology company mapping the therapeutic potential of secreted proteins to develop biologics that prevent, reverse, and cure chronic, metabolic, and age-related diseases.\
\
➡️: https://www.juvenatherapeutics.com\
\
Reason is co-founder and CEO of Repair Biotechnologies. He has been an active angel investor in the longevity industry since its earliest days, with investments including Oisin Biotechnologies and Leucadia Therapeutics. He is a long-standing and well-connected patient advocate for aging research, involved in numerous fundraising and outreach initiatives conducted by organizations such as the Methuselah Foundation and SENS Research Foundation since the early 2000s. He is also the founder and writer of Fight Aging!, a noted news and commentary website in the biotechnology community. \
\
➡️: https://www.repairbiotechnologies.com\
\
Dr. Hans Keirstead is an internationally known stem cell expert and has led therapy development for cancer, immune disorders, motor neuron diseases, spinal cord injury, and retinal diseases. He is the Chairman and CEO of AIVITA Biomedical. Dr. Keirstead’s work in spinal cord injury earned him the distinction of being one of the 100 top scientists of the year in Discover Magazine. He was featured on 60 Minutes in a full segment covering his treatment for spinal cord injury. Dr. Keirstead and his research have also appeared in Newsweek, Inc. Magazine, WIRED, Esquire, The NY Times, TIME Magazine, Men’s Vogue, Science, and The American Spectator, amongst other national publications.\
\
➡️: / hanskeirstead \
\
FOLLOW US\
▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀\
https://www.lifespan.io \
/ lifespanio \
/ lifespan.io \
\
HOW CAN YOU SUPPORT US?\
▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀\
Lifespan.io, a 501©(3) nonprofit organization. \
► Support us with monthly donations by becoming a Lifespan Hero: https://www.lifespan.io/support\
► Subscribe: \
► Learn more, and help us: https://www.lifespan.io\
\
#longevity #EARD2023 #desci #decentralized #nft #biotechnology #biology #healthscience #livelonger #agingbackwards #lifespan #healthspan #research

Jan 1, 2024

A global dataset of pandemic- and epidemic-prone disease outbreaks

Posted by in categories: bioengineering, biotech/medical, genetics, nanotechnology

I believe nanomachines or new advanced rna antivirals that can target one’s own variants of viruses will be game changers to prevent future global pandemics. Also eventually new genetic engineering could allow for the end to all viruses with some sorta Omni vaccine.


Measurement(s) Pandemic-and epidemic-prone disease outbreaks Technology Type(s) Text mining using R Sample Characteristic — Organism Disease outbreaks Sample Characteristic — Environment spatiotemporal region Sample Characteristic — Location Global.

Dec 30, 2023

The LIFE-EXTENSION Doctor: “The ONE thing that’s increasing your chance of early-death by 170.8%!”

Posted by in categories: bioengineering, biotech/medical, life extension

In this new episode Steven sits down with the physician and longevity expert, Dr Peter Attia. 0:00 Intro 03:26 What is your mission? 06:52 Medicine 3.0 14:51 When should we really think about diseases? 23:14 What role does trauma play in longevity? 47:24 The 5 health deterioration 50:16 Proof exercise is important 01:04:48 Body deterioration can be slowed down 01:08:38 How much exercise should we be doing? 01:14:03 The importance of stability 01:20:59 We’ve engineered discomfort out of our lives 01:26:29 Sugar 01:34:16 Misconceptions about weight loss 01:45:13 Alcohol 01:49:13 Sleep 01:52:35 Hormone replacement therapy 01:57:07 Hair loss 01:59:48 The last guests question You can purchase Dr Attia’s new book, ‘Outlive: The Science and Art of Longevity’, here — https://amzn.to/3FUD6ok Follow Dr Attia: Instagram: https://bit.ly/3rBMyJ7 Twitter: https://bit.ly/44DkrYF YouTube: https://bit.

Dec 28, 2023

CRISPR Gene Editing Had a Breakthrough Year—and It’s Only Getting Started

Posted by in categories: bioengineering, biotech/medical

CRISPR had a huge year. Even better, it’s still a work in progress, with the potential to reshape biotechnology for decades to come.

Dec 28, 2023

Ep. 20: J. Storrs Hall — Bringing Back A Future Past With Flying Cars, Nano-Robots and Multi-Level Cities By Nurturing A Techno-Optimist Culture and a Unleashing Second Nuclear Age

Posted by in categories: bioengineering, economics, genetics, information science, nanotechnology, robotics/AI

An interview with J. Storrs Hall, author of the epic book “Where is My Flying Car — A Memoir of Future Past”: “The book starts as an examination of the technical limitations of building flying cars and evolves into an investigation of the scientific, technological, and social roots of the economic…


J. Storrs Hall or Josh is an independent researcher and author.

Continue reading “Ep. 20: J. Storrs Hall — Bringing Back A Future Past With Flying Cars, Nano-Robots and Multi-Level Cities By Nurturing A Techno-Optimist Culture and a Unleashing Second Nuclear Age” »

Dec 27, 2023

Why ‘resurrection biology’ is gaining traction around the world

Posted by in categories: bioengineering, biotech/medical, existential risks, genetics

Resurrection biology — attempting to bring strings of molecules and more complex organisms back to life — is gaining traction in labs around the world.

The work is a far cry from the genetically engineered dinosaurs that escape in the blockbuster movie “Jurassic Park,” although for some scientists the ultimate goal is de-extinction and resurrecting animals and plants that have been lost.

Other researchers are looking to the past for new sources of drugs or to sound an alarm about the possibility of long-dormant pathogens. The field of study is also about recreating elements of human history in an attempt to better understand how our ancestors might have lived and died.

Dec 24, 2023

The Genetic Revolution: The Manipulation of Human DNA | Documentary

Posted by in categories: bioengineering, biotech/medical, education, genetics

The Genetic Revolution is a compelling science documentary that invites viewers into the groundbreaking world of DNA manipulation and genetic engineering. This intriguing documentary showcases the innovative science behind genetic modifications and chronicles a diverse team of scientists from around the world as they utilize advanced DNA editing technologies like CRISPR in ways previously deemed unthinkable.\

With its exploration into the rapidly evolving science of DNA editing, \.

Dec 24, 2023

Bioengineers building the intersection of organoids and AI with ‘Brainoware’

Posted by in categories: bioengineering, biotech/medical, robotics/AI

Feng Guo, an associate professor of intelligent systems engineering at the Indiana University Luddy School of Informatics, Computing and Engineering, is addressing the technical limitations of artificial intelligence computing hardware by developing a new hybrid computing system—which has been dubbed “Brainoware”—that combines electronic hardware with human brain organoids.

Advanced AI techniques, such as and , which are powered by specialized silicon computer chips, expend enormous amounts of energy. As such, engineers have designed neuromorphic computing systems, modeled after the structure and function of a human brain, to improve the performance and efficiency of these technologies. However, these systems are still limited in their ability to fully mimic brain function, as most are built on digital electronic principles.

In response, Guo and a team of IU researchers, including graduate student Hongwei Cai, have developed a hybrid neuromorphic computing system that mounts a brain organoid onto a multielectrode assay to receive and send information. The brain organoids are brain-like 3D cell cultures derived from and characterized by different brain cell types, including neurons and glia, and brain-like structures such as ventricular zones.

Dec 23, 2023

This first CRISPR gene-editing treatment is just the beginning. Here’s what’s coming next

Posted by in categories: bioengineering, biotech/medical, chemistry, food, genetics, robotics/AI

2023 was the year that CRISPR gene-editing sliced its way out of the lab and into the public consciousness—and American medical system. The Food and Drug Administration recently approved the first gene-editing CRISPR therapy, Casgevy (or exa-cel), a treatment from CRISPR Therapeutics and partner Vertex for patients with sickle cell disease. This comes on the heels of a similar green light by U.K. regulators in a historic moment for a gene-editing technology whose foundations were laid back in the 1980s, eventually resulting in a 2020 Nobel Prize in Chemistry for pioneering CRISPR scientists Jennifer Doudna and Emmanuelle Charpentier.

That decades-long gap between initial scientific spark, widespread academic recognition, and now the market entry of a potential cure for blood disorders like sickle cell disease that afflict hundreds of thousands of people around the world is telling. If past is prologue, even newer CRISPR gene-editing approaches being studied today have the potential to treat diseases ranging from cancer and muscular dystrophy to heart disease, birth more resilient livestock and plants that can grapple with climate change and new strains of deadly viruses, and even upend the energy industry by tweaking bacterial DNA to create more efficient biofuels in future decades. And novel uses of CRISPR, with assists from other technologies like artificial intelligence, might fuel even more precise, targeted gene-editing—in turn accelerating future discovery with implications for just about any industry that relies on biological material, from medicine to agriculture to energy.

With new CRISPR discoveries guided by AI, specifically, we can expand the toolbox available for gene editing, which is crucial for therapeutic, diagnostic, and research applications… but also a great way to better understand the vast diversity of microbial defense mechanisms, said Feng Zhang, another CRISPR pioneer, molecular biologist, and core member at the Broad Institute of MIT and Harvard in an emailed statement to Fast Company.

Dec 22, 2023

New, DNA-Dependent Gene Editing Technology Could Shift the Paradigm of Precise Editing

Posted by in categories: bioengineering, biotech/medical, chemistry

For instance, the pegRNA molecules used in prime editing are difficult and expensive to chemically synthesise or laborious to clone, which hampers the crucial optimisation of prime-editing efficiency. Additionally, the reverse transcriptase (RT) enzymes used in prime editing are relatively error-prone and have low processivity, which may limit the precision and size of edits that can be introduced. Furthermore, RTs have a low affinity for dNTPs, which can impact prime-editing efficiency in non-dividing and differentiated cells.

To address these issues, two research groups led by Dr. Ben Kleinstiver at Mass General Hospital (MGH) & Harvard Medical School, and Dr. Erik Sontheimer at the RNA Therapeutics Institute (UMass Chan Medical School) have independently developed new approaches that build upon prime editing by replacing RT with another type of enzyme, namely a DNA-dependent DNA polymerase. This change permits the use of DNA instead of RNA as a template for editing, potentially addressing some of the main limitations of prime editing by allowing higher efficiency and adaptability.

Page 18 of 214First1516171819202122Last