БЛОГ

Archive for the ‘bioengineering’ category: Page 206

Jun 22, 2016

Italian Paleontologist Turns to Materialise to Help 3D Print Trilobite Fossils

Posted by in categories: 3D printing, bioengineering, biotech/medical

Who needs cloning or gene editing; when you have 3D printers.


Although—in the grand scheme of things—3D printing is a relatively new technology in the eyes of humanity, that certainly doesn’t mean that it can’t be used to recreate some of the most ancient artifacts and fossils scattered throughout the Earth. Over the past year, we’ve seen 3D printing technology help recreate the oldest chameleon fossil ever found, as well as a 1220-foot Titanosaur fossil. Even some of the world’s tiniest fossils have been digitally resized and 3D printed so that a paleontologist from the University of Oxford could better examine them. Now, trilobites, which are a group of extinct marine arthropods, are undergoing their own unique form of 3D printed treatment.

Dr. Gianpaolo Di Silvestro, established paleontologist and CEO of the Italian company Trilobite Design Italia, specializes in this group of extinct arthropods, and uses his company to sell both original trilobite fossils and model replicas to collectors, institutions, and museums across the globe. After realizing that a great number of museums were able to provide text information on these fossils, but not a true physical representation, Dr. Di Silvestro decided to provide these museums with palpable trilobite models that would allow visitors to actually hold the ancient past in the palms of their hands. Since traditional fossil casting and modeling proved to be much too costly and time-consuming, Dr. Di Silvestro instead collaborated with Italian architect and 3D designer Francesco Baldassare to work in tandem and design accurate 3D models of trilobites.

Continue reading “Italian Paleontologist Turns to Materialise to Help 3D Print Trilobite Fossils” »

Jun 22, 2016

A federal panel just gave the green light to use gene editing on humans

Posted by in categories: bioengineering, biotech/medical, genetics, health

Scientists are one step closer to using CRISPR gene editing on humans, with a US federal advisory panel approving the use of the technique for a study led by the University of Pennsylvania.

The scientists are seeking to use the CRISPR-Cas9 technique to create genetically altered T cells – white blood cells that play an important role in our immune system – that are more effective at fighting cancer cells in patients with melanoma, multiple myeloma, and sarcoma.

“Our preliminary data suggests that we could improve the efficacy of these T cells if we use CRISPR,” lead researcher Carl June told the National Institute of Health’s (NIH) Recombinant DNA Advisory Committee (RAC) on Tuesday.

Continue reading “A federal panel just gave the green light to use gene editing on humans” »

Jun 20, 2016

Money Behind First CRISPR Test? It’s from Internet Billionaire Sean Parker

Posted by in categories: bioengineering, biotech/medical, economics, internet

A next wave of cancer treatments may combine immunotherapy and gene editing.

Read more

Jun 19, 2016

Genetically enhancing our children could raise interest rates

Posted by in categories: bioengineering, business, economics, genetics, government, neuroscience

Always a trickle down effect on things that improve or change. Just reconfirms and reminds us organically how everything is indeed connected.


Capital tends to have greater value the more skilled and educated the workforce. Anticipating genetically enhanced workers would cause firms to want to invest more now in new equipment and buildings. Many assets, such as real estate and intellectual property, become more valuable the richer a society and so expectations of a much higher economic growth rate would cause companies to spend more buying and developing these assets so that businesses, as well as governments, will wish to borrow more when they realize the potential of human genetic engineering.

Many individuals will reduce their savings rate in anticipation of a future richer society. Today, fear that Social Security won’t survive motivates many Americans to save, but this fear and so this incentive for saving would disappear once genetic engineering for intelligence proves feasible. Furthermore, many citizens would rationally expect future government benefits to senior citizens to increase in a world made richer by genetic engineering and this expectation would reduce the perceived need to save for retirement.

Continue reading “Genetically enhancing our children could raise interest rates” »

Jun 18, 2016

First Human Test of CRISPR Proposed

Posted by in categories: bioengineering, biotech/medical

Doctors at the University of Pennsylvania seek approval for gene editing to fight cancer.

Read more

Jun 15, 2016

SynBio Advances on Multiple Fronts

Posted by in categories: bioengineering, biotech/medical, life extension

List of the who’s who are leading some of key bio programs around nextgen bio/ living cell technologies.


According to GEN’s experts, synthetic biology isn’t yet plug-and-play, but cellular processes are being engineered into biosensing systems as well as biologics production. Soon, for tasks from theranostics to regenerative medicine, “there will be a synbio app for that.”

Read more

Jun 10, 2016

Living Bacteria Can Now Store Data

Posted by in categories: bioengineering, biotech/medical, computing, genetics

Using the CRISPR gene-editing tool, scientists from Harvard University have developed a technique that permanently records data into living cells. Incredibly, the information imprinted onto these microorganisms can be passed down to the next generation.

CRISPR/Cas9 is turning into an incredibly versatile tool. The cheap and easy-to-use molecular editing system that burst onto the biotech scene only a few years ago is being used for a host of applications, including genetic engineering, RNA editing, disease modeling, and fighting retroviruses like HIV. And now, as described in a new Science paper, it can also be used to turn lowly microorganisms into veritable hard drives.

http://io9.gizmodo.com/5935415/why-dna-is-the-future-of-data-storage

Read more

Jun 9, 2016

Engineered pathogen-binding protein enables rapid isolation of infectious bacteria from joint fluids

Posted by in categories: bioengineering, biotech/medical, genetics

Very cool.


Pinpointing the type of bacteria that are at the root of an infection in clinical samples removed from living tissues, such as blood, urine or joint fluids, to quickly identify the best anti-microbial therapy still poses a formidable challenge. The standard method of culturing can take days to reveal pathogens, and they often fail to bring them to light altogether.

A team lead by Donald Ingber, M.D., Ph.D., at the Wyss Institute for Biologically Inspired Engineering at Harvard University now reports a method in PLoS, which enables the rapid isolation and concentration of infectious bacteria from complex clinical samples to help speed up bacterial identification, and it should be able to accelerate the determination of antibiotic susceptibilities as well.

Continue reading “Engineered pathogen-binding protein enables rapid isolation of infectious bacteria from joint fluids” »

Jun 8, 2016

Slime mold gives insight into the intelligence of neuron-less organisms

Posted by in categories: bioengineering, neuroscience

How do organisms without brains make decisions? Most of life is brainless and the vast majority of organisms on Earth lack neurons altogether. Plants, fungi and bacteria must all cope with the same problem as humans — to make the best choices in a complex and ever-changing world or risk dying — without the help of a simple nervous system in many cases.

A team of researchers from New Jersey Institute of Technology (NJIT), the University of Sydney, the University of Sheffield and the University of Leeds recently studied this problem in the unicellular slime mold, Physarum polycephalum, a single-cell organism that can grow to several square meters in size. This giant cell, which typically lives in shady, cool and moist areas of temperate forests, spreads out to search its environment like an amoeba, extending oozy tendrils along the forest floor in search of its prey of fungi, bacteria and decaying vegetable matter.

Neither plant, animal nor fungus, P. polycephalum has become an unlikely candidate for studies of cognition, due to its spectacular problem-solving abilities. In recent studies, Physarum has been shown to solve labyrinth mazes, make complicated trade-offs, anticipate periodic events, remember where it has been, construct transport networks that have similar efficiency to those designed by human engineers and even make irrational decisions — a capability that has long been viewed as a by-product of brain circuitry.

Continue reading “Slime mold gives insight into the intelligence of neuron-less organisms” »

Jun 7, 2016

Sources of longevity genes for genetic engineering

Posted by in categories: bioengineering, biotech/medical, genetics, life extension

There are various animals that can live for centuries or millenia.

Genetic engineering technology is rapidly improving and genome wide genetic engineering could become a reality within 10–20 years. It could be possible to replicate in humans the longevity genes and cancer immunity in certain animals.

The longest lived mammal is the bowhead whales. Some confirmed sources estimate bowhead whales to have lived at least to 211 years of age.

Continue reading “Sources of longevity genes for genetic engineering” »