БЛОГ

Archive for the ‘bioengineering’ category: Page 210

Feb 14, 2016

Robots ‘will make majority of humans unemployed within 30 years’

Posted by in categories: bioengineering, computing, drones, employment, robotics/AI, transportation

The pace at which robots and intelligent machines are able to take over the jobs traditionally performed by humans will result in more than half the population being unemployed within 30 years, an expert in computing has predicted.

While some may look forward to a life of leisure, many others face the dismal prospect of long-term unemployment as a result of the rise of smart machines, from self-driving cars and intelligent drones to smart financial-trading machines, said Moshe Vardi, professor of computational engineering at Rice University in Houston, Texas.

Read more

Feb 8, 2016

Artificial Life in Quantum Technologies

Posted by in categories: bioengineering, evolution, quantum physics

We develop a quantum information protocol that models the biological behaviours of individuals living in a natural selection scenario. The artificially engineered evolution of the quantum living units shows the fundamental features of life in a common environment, such as self-replication, mutation, interaction of individuals, and death. We propose how to mimic these bio-inspired features in a quantum-mechanical formalism, which allows for an experimental implementation achievable with current quantum platforms. This study paves the way for the realization of artificial life and embodied evolution with quantum technologies.

Read more

Feb 2, 2016

Top 6 Ways Technology Will Make You Immortal

Posted by in categories: bioengineering, computing, Elon Musk, geopolitics, life extension, neuroscience, Ray Kurzweil, robotics/AI, sustainability

Becoming immortal is one of mankind’s many quixotic notions that most people will relegate to the world of fantasy and science fiction. However, there is a subset of prominent scientists who believe that immortality is not only attainable, but it is something that will come to fruition in as little as 25 years. This idea is shared by men like Google’s Director of Engineering, Ray Kurzweil; Tesla Motors CEO, Elon Musk; and one of the most interesting presidential candidates outside of Donald Trump and Deez Nuts, Zoltan Istvan. All three men identify as trans-humanist, and for those who don’t know, trans-humanism is the idea that mankind will one day be able to transcend our biological limitations through the use of science and technology; not to mention, the movement has accumulated over 3 million supporters worldwide. So the question remains, with the multitude of prominent intellectuals who believe immortality is a tangible goal, just how will they go about achieving it? Well, the six answers below could possibly hold the key to everlasting life.

Number Six: Uploading Minds to Computers. Futurists believe that at some point in the near future we will be able to copy and scan all of the data that exists in our brains and upload the information into a computer. This will allow us to perpetually exist as incorporeal inhabitants of cyberspace. Of course, the idea of mind uploading is still purely science fiction, but if it ever becomes tangible, progeny could possibly live in a limitless world, that echoes notions expressed in the Matrix; minus the robot despots.

Read more

Feb 1, 2016

The 9 Lives of the Dreamer & Maker: Phillipe Bojorquez

Posted by in categories: bioengineering, lifeboat, robotics/AI

I gave an interview for a queer people of interest blog and plugged the lifeboat foundation. Thought I would share the information here.


Phillipe Bojorquez is an engineer, activist, and artist: He has been described as “a futurist with a community minded bent.” He is a engineer, with experience at First Dibs, Samsung, Boxee, and Canary. He is a board member of The Lifeboat Foundation, an independent research group dedicated to helping humanity survive the risks posed by new technologies. His research areas include artificial intelligence, robotics, engineering, and philosophy. Bojorquez is a past board member of CRUX, NYC’s LGBT rock climbing organization, and an early contributor and organizer of Vegans in Vegas, a yearly gathering of activists and entrepreneurs at the forefront of nutrition and sustainability.

Read more

Jan 30, 2016

Genetic engineering could thwart the Zika virus, among other mosquito-borne diseases

Posted by in categories: bioengineering, biotech/medical, genetics, habitats, health, transportation

With the recent use of genetically engineered mosquitoes in Brazil to halt the spread of the Zika virus, we might be beginning to see some major health improvements as a consequence of the genetics revolution. A world in which mosquitoes were all but eliminated from the ecosystem would look quite different from the world of today, especially for people living in the tropics where the threat of mosquito transmitted infections does more than just mar an otherwise tranquil margarita sipped from the veranda of a beach resort. This is not to beggar the more mundane advantages of a mosquito-free habitat, but rather call attention to the fact that for large parts of the world, including Brazil, mosquitoes can be the difference between life and death.

Ironically, the genetic changes made to the Aedes aegypti mosquito in order to halt the spread of the Zika virus are deceptively simple. The company behind the project, Oxitec, used a modified version of something called the “Sterile Insect Technique” to create their hybrid specimens. The end goal of this process is to produce a male mosquito possessing a “self-limiting gene.” When these males mate with wild female mosquitoes, they create non viable offspring that perish soon after the birth. The end result is a rapid drop in the mosquito population of a given area.

When compared with some of the more hazardous forms of mosquito control currently in use such as massive spraying of DEET and chemical infusers popular throughout Asia, sterilizing mosquitoes sounds like an imminently reasonable approach. As a journalist who once saw his roadside samosa blasted by a massive spray of DEET from an oncoming municipal vehicle in India, I can personally attest to a preference for a genetic solution.

Read more

Jan 21, 2016

Memory capacity of brain is 10 times more than previously thought

Posted by in categories: bioengineering, computing, neuroscience

In a computational reconstruction of brain tissue in the hippocampus, Salk and UT-Austin scientists found the unusual occurrence of two synapses from the axon of one neuron (translucent black strip) forming onto two spines on the same dendrite of a second neuron (yellow). Separate terminals from one neuron’s axon are shown in synaptic contact with two spines (arrows) on the same dendrite of a second neuron in the hippocampus. The spine head volumes, synaptic contact areas (red), neck diameters (gray) and number of presynaptic vesicles (white spheres) of these two synapses are almost identical. (credit: Salk Institute)

Salk researchers and collaborators have achieved critical insight into the size of neural connections, putting the memory capacity of the brain far higher than common estimates. The new work also answers a longstanding question as to how the brain is so energy efficient, and could help engineers build computers that are incredibly powerful but also conserve energy.

Continue reading “Memory capacity of brain is 10 times more than previously thought” »

Jan 13, 2016

Brain monitoring takes a leap out of the lab

Posted by in categories: bioengineering, neuroscience, wearables

Bioengineers and cognitive scientists have developed the first portable, 64-channel wearable brain activity monitoring system that’s comparable to state-of-the-art equipment found in research laboratories.

Read more

Jan 12, 2016

Where Will Advanced Brain Mapping Lead Us?

Posted by in categories: bioengineering, biotech/medical, mapping, neuroscience, robotics/AI

In the early days of the space race of the 1960s, NASA used satellites to map the geography of the moon. A better understanding of its geology, however, came when men actually walked on the moon, culminating with Astronaut and Geologist Harrison Schmitt exploring the moon’s surface during the Apollo 17 mission in 1972.

Image credit: Scientific American

Image credit: Scientific American

In the modern era, Dr. Gregory Hickock is one neuroscientist who believes the field of neuroscience is pursuing comparable advances. While scientists have historically developed a geographic map of the brain’s functional systems, Hickock says computational neuroanatomy is digging deeper into the geology of the brain to help provide an understanding of how the different regions interact computationally to give rise to complex behaviors.

“Computational neuroanatomy is kind of working towards that level of description from the brain map perspective. The typical function maps you see in textbooks are cartoon-like. We’re trying to take those mountain areas and, instead of relating them to labels for functions like language, we’re trying to map them on — and relate them to — stuff that the computational neuroscientists are doing.”

Continue reading “Where Will Advanced Brain Mapping Lead Us?” »

Dec 30, 2015

The prose at the end of the universe — By Aaron Souppouris | Engadget

Posted by in categories: bioengineering, genetics, human trajectories, media & arts, space travel

https://soundcloud.com/kelly-tang-9/sets/nasa-sounds-of-earth

“Programming ‘indestructible’ bacteria to write poetry.”

Read more

Dec 28, 2015

Can We Evolve Ourselves To Expand Beyond Human Potential?

Posted by in categories: bioengineering, biotech/medical, evolution, existential risks, genetics, human trajectories

At one time or another, we’ve all been encouraged to “maximize our potential.” In a recent interview, Academic and Entrepreneur Juan Enriquez said that mankind is making progress toward expanding beyond its potential. And the changes, he believes, could be profound.

To illustrate the process, Enriquez theorized what might happen if we were to bring Charles Darwin back to life and drop him in the middle of Trafalgar Square. As Darwin takes out his notebook and starts observing, Enriquez suggested he would likely see what might appear to be a different species. Since Darwin’s time, humans have grown taller, and with 1.5 billion obese people, larger. Darwin might also notice some other features too that many of us take for granted — there are more senior citizens, more people with all their teeth, a lot fewer wrinkles, and even some 70-year-olds running in marathons.

“There’s a whole series of morphologies that are just different about our bodies, but we don’t notice it. We don’t notice we’ve doubled the lifespan of humans in the last century,” Enriquez said. “We don’t notice how many more informations (sic) come into a brain in a single day versus what used to come in in a lifetime. So, across almost every part of humanity, there have been huge changes.”

Part of the difference that Darwin would see, Enriquez noted, is that natural selection no longer applies as strongly to life and death as it once did. Further, random gene mutations that led to some advantages kept getting passed down to generations and became part of the species. The largest difference, however, is our ongoing move toward intelligent design, he said.

Continue reading “Can We Evolve Ourselves To Expand Beyond Human Potential?” »