Archive for the ‘bioengineering’ category: Page 29

Jan 10, 2023

How bio-inspired materials might inform the design of next-generation computers

Posted by in categories: bioengineering, biological, computing, health, nanotechnology

Ralph Lydic, professor in the UT Department of Psychology, and Dmitry Bolmatov, a research assistant professor in the UT Department of Physics and Astronomy, are part of a UT/ORNL research team studying how bio-inspired materials might inform the design of next-generation computers. Their results, published recently in the Proceedings of the National Academy of Sciences, could have big implications for both edge computing and human health.

Scientists at ORNL and UT discovered an artificial is capable of long-term potentiation, or LTP, a hallmark of biological learning and memory. This is the first evidence that a cell alone—without proteins or other biomolecules embedded within it—is capable of LTP that persists for many hours. It is also the first identified nanoscale structure in which memory can be encoded.

“When facilities were shut down as a result of COVID, this led us to pivot away from our usual membrane research,” said John Katsaras, a biophysicist in ORNL’s Neutron Sciences Directorate specializing in neutron scattering and the study of biological membranes at ORNL. “Together with postdoc Haden Scott, we decided to revisit a system previously studied by Pat Collier and co-workers, this time with an entirely different electrical stimulation protocol that we termed ‘training.’”.

Jan 8, 2023

Ep. 102: Genetic engineering and the biological basis of intelligence. | Steven Hsu

Posted by in categories: bioengineering, biotech/medical, computing, genetics, mathematics

Since the discovery of genetics, people have dreamed of being able to correct diseases, select traits in children before birth, and build better human beings. Naturally, many serious technical and ethical questions surround this endeavor. Luckily, tonights’ guest is as good a guide as we could hope to have.

Dr. Steve Hsu is Professor of Theoretical Physics and of Computational Mathematics, Science, and Engineering at Michigan State University. He has done extensive research in the field of computational genomics, and is the founder of several startups.

#geneticengineering #intelligence

Jan 7, 2023

Aging Is Linked to More Activity in Short Genes Than in Long Genes

Posted by in categories: bioengineering, biotech/medical, chemistry, genetics, life extension

Our DNA is made up of genes that vary drastically in size. In humans, genes can be as short as a few hundred molecules known as bases or as long as two million bases. These genes carry instructions for constructing proteins and other information crucial to keeping the body running. Now a new study suggests that longer genes become less active than shorter genes as we grow older. And understanding this phenomenon could reveal new ways of countering the aging process.

Luís Amaral, a professor of chemical and biological engineering at Northwestern University, says he and his colleagues did not initially set out to examine gene length. Some of Amaral’s collaborators at Northwestern had been trying to pinpoint alterations in gene expression—the process through which the information in a piece of DNA is used to form a functional product, such as a protein or piece of genetic material called RNA—as mice aged. But they were struggling to identify consistent changes. “It seemed like almost everything was random,” Amaral says.

Then, at the suggestion of Thomas Stoeger, a postdoctoral scholar In Amaral’s lab, the team decided to consider shifts in gene length. Prior studies had hinted that there might be such a large-scale change in gene activity with age—showing, for example, that the amount of RNA declines over time and that disruptions to transcription (the process through which RNA copies, or transcripts, are formed from DNA templates) can have a greater impact on longer genes than shorter ones.

Jan 7, 2023

Learn about CRISPR & Genome Editing

Posted by in categories: bioengineering, biotech/medical, ethics

CRISPR-Cas9 is a revolutionary gene editing tool that has wide spread implications for research, medical treatments, the environment, and ethics. In this pla…

Jan 5, 2023

Stimulating axon regrowth after spinal cord injury

Posted by in categories: bioengineering, biotech/medical, genetics, neuroscience

A new study by Burke Neurological Institute (BNI), Weill Cornell Medicine, finds that activation of MAP2K signaling by genetic engineering or non-invasive repetitive transcranial magnetic stimulation (rTMS) promotes corticospinal tract (CST) axon sprouting and functional regeneration after spinal cord injury (SCI) in mice.

RTMS is a noninvasive technique that evokes an electrical field in via electromagnetic induction. While an increasing body of evidence suggests that rTMS applied over motor cortex may be beneficial for functional recovery in SCI patients, the molecular and cellular mechanisms that underlie rTMS’ beneficial effects remains unclear.

A new study published in Science Translation Medicine showed that high-frequency rTMS (HF-rTMS) activated MAP2K signaling and enhanced axonal regeneration and functional recovery, suggesting that rTMS might be a valuable treatment option for SCI individuals.

Jan 5, 2023

The Failures and Opportunities of Immortality | Peter Ward, Feedback Loop, ep 75

Posted by in categories: bioengineering, biotech/medical, business, cryonics, life extension, media & arts

This week our guest is business and technology reporter, Peter Ward. Earlier this year, Peter released his book The Price of Immortality: The Race to Live Forever, where he investigates the many movements and organizations that are seeking to extend human life, from the Church of Perpetual Life in Florida, to some of the biggest tech giants in Silicon Valley.

In this episode, we explore Peter’s findings, which takes us on a tour from cryonics to mind uploading, from supplements to gene editing, and much more. Along the way, we discuss the details of how one might actually achieve immortality, the details of senescent cells and telomeres, whether it’s better to live healthy than to live long, the scams and failures that seem to dominate the space, as well as the efforts that seem most promising.

Continue reading “The Failures and Opportunities of Immortality | Peter Ward, Feedback Loop, ep 75” »

Jan 5, 2023

2.6 billion-year-old ancestors of the CRISPR gene-editing tool are resurrected

Posted by in categories: bioengineering, biotech/medical, evolution, genetics

An international research group has for the first time reconstructed ancestors dating back 2.6 billion years of the well-known CRISPR-Cas system, and studied their evolution over time. The results suggest that the revitalized systems not only work, but are more versatile than current versions and could have revolutionary applications. Nature Microbiology has published the results of this research, which, in the opinion of the research team, “opens up new avenues for gene editing.”

The project, led by Ikerbasque research professor Rául Pérez-Jiménez of CIC nanoGUNE, involves teams from the Spanish National Research Council, the University of Alicante, the Rare Diseases Networking Biomedical Research Center (CIBERER), the Ramón y Cajal Hospital-IRYCIS and other national and international institutions.

The acronym CRISPR refers to the repeated sequences present in the DNA of bacteria and archaea (prokaryotic organisms). Among the repeats, these microorganisms harbor fragments of genetic material from viruses that infected their ancestors; that enables them to recognize a repeat infection and defend themselves by cutting the invaders’ DNA using Cas proteins associated with these repeats. It is a mechanism (CRISPR-Cas system) of antiviral defense. This ability to recognize DNA sequences is the basis of their usefulness, and they act as if they were molecular scissors. Nowadays CRISPR-Cas technology enables pieces of genetic material to be cut and pasted into any cell, so that it can be used to edit DNA.

Jan 4, 2023

Nature Biotechnology

Posted by in categories: bioengineering, biotech/medical, food

Is a monthly journal publishing new concepts in biological technology of relevance to bioengineering, medicine, energy, agriculture, food…

Jan 3, 2023

Evolution of CRISPR-associated Endonucleases as Inferred from Resurrected Proteins

Posted by in categories: bioengineering, biotech/medical, evolution

Clustered regularly interspaced short palindromic repeats (CRISPR)-associated Cas9 protein is an effector that plays a major role in a prokaryotic adaptive immune system, by which invading DNA can be targeted and cut for inactivation. The Cas9 endonuclease is directed to target sites by a guide RNA (gRNA) where Cas9 can recognize specific sequences (PAMs) in foreign DNA, which then serve as an anchoring point for cleavage of the adjacent RNA-matching DNA region. Although the CRISPR-Cas9 system has been widely studied and repurposed for diverse applications (notably, genome editing), its origin and evolution remain to be elucidated. Here, we investigate the evolution of Cas9 from resurrected ancient nucleases (anCas) in extinct firmicutes species as old as 2,600 myr to the current day. Surprisingly, we demonstrate that these ancient forms were much more flexible in their PAM and gRNA scaffold requirements compared to modern day Cas9 enzymes. In addition, anCas portrays a gradual paleoenzymatic adaptation from nickase to double-strand break activity, suggesting a mechanism by which ancient CRISPR systems could propagate when harboring Cas enzymes with minimal PAMs. The oldest anCas also exhibit high levels of activity with ssDNA and ssRNA targets, resembling Cas nucleases in related system types. Finally, we illustrate editing activity of the anCas enzymes in human cells. The prediction and characterization of anCas proteins uncovers an unexpected evolutionary trajectory leading to ancient enzymes with extraordinary properties.

R. P-J., B. A-L. are co-inventors on patent application filed by CIC nanoGUNE and licenced to Integra Therapeutics S.L. relating to work in this article. A. S-M. and M.G. are co-founders of Integra Therapeutics S.L. B.P.K is an inventor on patents and/or patent applications filed by Mass General Brigham that describe genome engineering technologies. B.P.K. is a consultant for Avectas Inc., EcoR1 capital, and ElevateBio, and is an advisor to Acrigen Biosciences and Life Edit Therapeutics.

Jan 2, 2023

Solar-powered cells: Light-activated proton pumps generate cellular energy, extend life

Posted by in categories: bioengineering, biotech/medical, chemistry, genetics, life extension

New research in the journal Nature Aging takes a page from the field of renewable energy and shows that genetically engineered mitochondria can convert light energy into chemical energy that cells can use, ultimately extending the life of the roundworm C. elegans. While the prospect of sunlight-charged cells in humans is more science fiction than science, the findings shed light on important mechanisms in the aging process.

“We know that is a consequence of aging,” said Andrew Wojtovich, Ph.D., associate professor of Anesthesiology and Perioperative Medicine and Pharmacology & Physiology at the University of Rochester Medical Center and senior author of the study.

“This study found that simply boosting metabolism using light-powered gave laboratory worms longer, healthier lives. These findings and new research tools will enable us to further study mitochondria and identify new ways to treat age-related diseases and age healthier.”

Page 29 of 197First2627282930313233Last