Toggle light / dark theme

Nonsurgical Neural Interfaces Could Significantly Expand Use of Neurotechnology

Noninvasive braincomputer interfaces could vastly improve brain computer control.


Over the past two decades, the international biomedical research community has demonstrated increasingly sophisticated ways to allow a person’s brain to communicate with a device, allowing breakthroughs aimed at improving quality of life, such as access to computers and the internet, and more recently control of a prosthetic limb. DARPA has been at the forefront of this research.

The state of the art in brain-system communications has employed invasive techniques that allow precise, high-quality connections to specific neurons or groups of neurons. These techniques have helped patients with brain injury and other illnesses. However, these techniques are not appropriate for able-bodied people. DARPA now seeks to achieve high levels of brain-system communications without surgery, in its new program, Next-Generation Nonsurgical Neurotechnology (N3).

“DARPA created N3 to pursue a path to a safe, portable neural interface system capable of reading from and writing to multiple points in the brain at once,” said Dr. Al Emondi, program manager in DARPA’s Biological Technologies Office (BTO). “High-resolution, nonsurgical neurotechnology has been elusive, but thanks to recent advances in biomedical engineering, neuroscience, synthetic biology, and nanotechnology, we now believe the goal is attainable.”

World’s Fastest Microscope Freezes Time To Capture Moving Electrons

University of Arizona researchers have developed an ‘attomicroscopy’ technique using a novel ultrafast electron microscope that captures moving electrons in unprecedented detail, paving the way for significant scientific breakthroughs in physics and other fields.

Imagine having a camera so advanced that it can capture freeze-frame images of a moving electron—an object so fast it could orbit the Earth multiple times in just a second. Researchers at the University of Arizona have developed the world’s fastest electron microscope capable of this remarkable feat.

They believe their work will lead to groundbreaking advancements in physics, chemistry, bioengineering, materials sciences, and more.

Synthetic Biology in Medicine: How it’s Used

The future of medicine lies in synthetic biology! In this video, you’ll learn how synthetic biology is used in healthcare and why it can help develop cancer treatments and much more.

Are you interested in furthering the field of biology or medicine? Visit uvu.edu to carve your path.

Instagram: / utah.valley.university.

Facebook: / utahvalleyuniversity.

LinkedIn: / utah-valley-university.

Twitter: / uvu.

Mucus-based bioink could be used to Print and Grow Lung Tissue

#bioink could be used to #Print and #Grow #Lung #Tissue.

Researchers describe their success in creating a mucus-based bioink for 3D printing lung tissue. This advancement could one day help study and treat chronic lung conditions. scitechupdates.com/mucus-based-bi


Lung diseases kill millions of people around the world each year. Treatment options are limited, and animal models for studying these illnesses and experimental medications are inadequate. Now, writing in ACS Applied Bio Materials, researchers describe their success in creating a mucus-based bioink for 3D printing lung tissue. This advancement could one day help study and treat chronic lung conditions.

While some people with lung diseases receive transplants, donor organs remain in short supply. As an alternative, medications and other treatments can be used to manage symptoms, but no cure is available for disorders such as chronic obstructive pulmonary disease and cystic fibrosis. Researchers continue to seek better medications, often relying on testing in rodents. But these animal models may only partially capture the complexities of pulmonary diseases in humans, and they might not accurately predict the safety and efficacy of new drugs.

Meanwhile, bioengineers are exploring the production of lung tissue in the lab, either as a more accurate model to study human lungs or as a potential material to use in implants. One technique involves 3D printing structures that mimic human tissue, but designing a suitable bioink to support cell growth remains challenging. So, Ashok Raichur and colleagues set out to overcome this obstacle.