Emmett Short discusses these comments on this episode of Lifespan News.
But first, the mad scientist David Sinclair, this time with Peter Diamandis at Abundance 360, giving more details into human trials for the genetic engineering side of the technology versus the chemical and pill side of the technology. Which would you want more? We’ll also hear David’s thoughts on how AI will affect the advancement of this tech. Spoiler: A lot. I’m going to play the best parts and add my commentary along the way.
The Wistar Institute’s David B. Weiner and collaborators have engineered novel monoclonal antibodies that engage natural killer (NK) cells through a unique surface receptor that activates the immune system to fight against cancer.
In their publication titled, “Siglec-7 glyco-immune binding MAbs or NK cell engager biologics induce potent anti-tumor immunity against ovarian cancers,” published in Science Advances, the team demonstrates the preclinical feasibility of utilizing these new cancer immunotherapeutic approaches against diverse ovarian cancer types, including treatment-resistant and refractory ovarian cancers—alone or in combination with checkpoint inhibitor treatment.
The research started as a collaboration between Wistar’s Drs. Weiner and Mohamed Abdel-Mohsen, who were exploring the development of new glyco-signaling biologic tools that may be important in the fight against cancer.
Regenerative medicine and tissue engineering strategies have made remarkable progress in remodeling, replacing, and regenerating damaged cardiovascular tissues. The design of three-dimensional (3D) scaffolds with appropriate biochemical and mechanical characteristics is critical for engineering tissue-engineered replacements. The extracellular matrix (ECM) is a dynamic scaffolding structure characterized by tissue-specific biochemical, biophysical, and mechanical properties that modulates cellular behavior and activates highly regulated signaling pathways. In light of technological advancements, biomaterial-based scaffolds have been developed that better mimic physiological ECM properties, provide signaling cues that modulate cellular behavior, and form functional tissues and organs.
The only cure for painful sickle cell disease today is a bone marrow transplant. But soon there may be a new cure that attacks the disorder at its genetic source.
On Tuesday, advisers to the Food and Drug Administration will review a gene therapy for the inherited blood disorder, which in the U.S. mostly affects Black people. Issues they will consider include whether more research is needed into possible unintended consequences of the treatment.
If approved by the FDA, it would be the first gene therapy on the U.S. market based on CRISPR, the gene editing tool that won its inventors the Nobel Prize in 2020.
A team of researchers has developed a software tool called DANGER (Deleterious and ANticipatable Guides Evaluated by RNA-sequencing) analysis that provides a way for the safer design of genome editing in all organisms with a transcriptome. For about a decade, researchers have used the CRISPR technology for genome editing. However, there are some challenges in the use of CRISPR. The DANGER analysis overcomes these challenges and allows researchers to perform safer on-and off-target assessments without a reference genome. It holds the potential for applications in medicine, agriculture, and biological research.
Their work is published in the journal Bioinformatics Advances on August 23, 2023.
Genome editing, or gene editing, refers to technologies that allow researchers to change the genomic DNA of an organism. With these technologies, researchers can add, remove or alter genetic material in the genome.
This exemplary virus makes its own genes which many have theories say that it could be a direct relationship to the sorta alien ant farm we are currently in on earth. That maybe it is a clue that viruses started all life from a sorta panspermia whether it was from meteorites or even direct gene engineering from aliens this virus gives us a clue even to our evolutionary processes that we could even become aliens someday.
Pandoraviruses, the largest viruses ever found, are shaking up the tree of life. Could they and other abnormally large viruses belong to a fourth branch of life separate from Bacteria, Archaea, and Eukaryotes?
Here’s my latest Opinion piece just out for Newsweek…focusing on cyborg rights.
Over the past half-century, the microprocessor’s capacity has doubled approximately every 18–24 months, and some experts predict that by 2030, machine intelligence could surpass human capabilities. The question then arises: When machines reach human-level intelligence, should they be granted protection and rights? Will they desire and perhaps even demand such rights?
Beyond advancements in microprocessors, we’re witnessing breakthroughs in genetic editing, stem cells, and 3D bioprinting, all which also hold the potential to help create cyborg entities displaying consciousness and intelligence. Notably, Yale University’s experiments stimulating dead pig brains have ignited debates in the animal rights realm, raising questions about the ethical implications of reviving consciousness.
Amid these emerging scientific frontiers, a void in ethical guidelines exists, akin to the Wild West of the impending cyborg age. To address these ethical challenges, a slew of futurist-oriented bills of rights have emerged in the last decade. One of the most prominent is the Transhumanist Bill of Rights, which is in its third revision through crowdsourcing and was published verbatim by Wired in 2018.
Recent studies have found that Gires-Tournois (GT) biosensors, a type of nanophotonic resonator, can detect minuscule virus particles and produce colorful micrographs (images taken through a microscope) of viral loads. But they suffer from visual artifacts and non-reproducibility, limiting their utilization.
In a recent breakthrough, an international team of researchers, led by Professor Young Min Song from the School of Electrical Engineering and Computer Science at Gwangju Institute of Science and Technology in Korea, has leveraged artificial intelligence (AI) to overcome this problem. Their work was published in Nano Today.
Rapid and on-site diagnostic technologies for identifying and quantifying viruses are essential for planning treatment strategies for infected patients and preventing further spread of the infection. The COVID-19 pandemic has highlighted the need for accurate yet decentralized diagnostic tests that do not involve complex and time-consuming processes needed for conventional laboratory-based tests.
The Collective Intelligence of Cells During Morphogenesis: What Bioelectricity Outside the Brain Means for Understanding our Multiscale Nature with Michael Levin — Incredible Minds.
Recorded: April 29, 2023.
Each of us takes a remarkable journey from physics to mind: we start as a blob of chemicals in an unfertilized quiescent oocyte and becomes a complex, metacognitive human being. The continuous process of transformation and emergence that we see in developmental biology reminds us that we are true collective intelligences – composed of cells which used to be individual organisms themselves. In this talk, I will describe our work on understanding how the competencies of single cells are harnessed to solve problems in anatomical space, and how evolution pivoted this scaling of intelligence into the familiar forms of cognition in the nervous system. We will talk about diverse intelligence in novel embodiments, the scaling of the cognitive light cone of all beings, and the role of developmental bioelectricity as a cognitive glue and as the interface by which mind controls matter in the body. I will also show a new synthetic life form, and discuss what it means for bioengineering and ethics of human relationships to the wider world of possible beings. We will discuss the implications of these ideas for understanding evolution, and the applications we have developed in birth defects, cancer, and traumatic injury repair. By merging deep ideas from developmental biophysics, computer science, and cognitive science, we not only get a new perspective on fundamental questions of life and mind, but also new roadmaps in regenerative medicine, biorobotics, and AI.
Michael Levin received dual undergraduate degrees in computer science and biology, followed by a PhD in molecular genetics from Harvard. He did his post-doctoral training at Harvard Medical School, and started his independent lab in 2000. He is currently the Vannevar Bush chair at Tufts University, and an associate faculty member of the Wyss Institute at Harvard. He serves as the founding director of the Allen Discovery Center at Tufts. His lab uses a mix of developmental biophysics, computer science, and behavior science to understand the emergence of mind in unconventional embodiments at all scales, and to develop interventions in regenerative medicine and applications in synthetic bioengineering. They can be found at www.drmichaellevin.org/