БЛОГ

Archive for the ‘bioengineering’ category: Page 4

Nov 14, 2024

Minimally invasive neural interface allows brain access without skull opening

Posted by in categories: bioengineering, biotech/medical, neuroscience

A team of researchers led by Rice University’s Jacob Robinson and the University of Texas Medical Branch’s Peter Kan has developed a technique for diagnosing, managing and treating neurological disorders with minimal surgical risks. The team’s findings were published in Nature Biomedical Engineering.

While traditional approaches for interfacing with the nervous system often require creating a hole in the skull to with the brain, the researchers have developed an innovative method known as endocisternal interfaces (ECI), allowing for electrical recording and stimulation of neural structures, including the brain and , through (CSF).

“Using ECI, we can access multiple brain and spinal cord structures simultaneously without ever opening up the skull, reducing the risk of complications associated with traditional surgical techniques,” said Robinson, professor of electrical and computer engineering and bioengineering.

Nov 13, 2024

Top 25 Biohacking Gifts for 2025

Posted by in categories: bioengineering, health

With the holidays coming up I wanted to update this biohacking gift guide to help out anyone looking to get someone a health-promoting gift!


Looking for the best biohacking gifts for 2024? Look no further; we’ve got you covered.

Nov 13, 2024

Giving robots superhuman vision using radio signals

Posted by in categories: bioengineering, robotics/AI

Researchers at Penn Engineering have developed PanoRadar, a system that uses radio waves and AI to provide robots with detailed 3D environmental views, even in challenging conditions like smoke and fog. This innovation offers a cost-effective alternative to LiDAR, enhancing robotic navigation and perception capabilities.


In the race to develop robust perception systems for robots, one persistent challenge has been operating in bad weather and harsh conditions. For example, traditional, light-based vision sensors such as cameras or LiDAR (Light Detection And Ranging) fail in heavy smoke and fog.

Continue reading “Giving robots superhuman vision using radio signals” »

Nov 9, 2024

Can Life Be Engineered? Biochemists Take Key Steps Toward Synthetic Lifeforms

Posted by in categories: bioengineering, biological

Scientists are designing simplified biological systems, aiming to construct synthetic cells and better understand life’s mechanisms.

One of the most fundamental questions in science is how lifeless molecules can come together to form a living cell. Bert Poolman, Professor of Biochemistry at the University of Groningen, has been working to solve this problem for two decades. He aims to understand life by trying to reconstruct it; he is building simplified artificial versions of biological systems that can be used as components for a synthetic cell.

His work was detailed in two new papers published in Nature Nanotechnology and Nature Communications. In the first paper, he describes a system for energy conversion and cross-feeding of products of this reaction between synthetic cells, while he describes a system for concentrating and converting nutrients in cells in the second paper.

Nov 8, 2024

MIT Scientists Develop New Way To Treat the Brain — Without Invasive Implants or Genetic Tweaks

Posted by in categories: bioengineering, biotech/medical, genetics, nanotechnology, neuroscience

Novel magnetic nanodiscs could provide a much less invasive way of stimulating parts of the brain, paving the way for stimulation therapies without implants or genetic modification, MIT researchers report.

The scientists envision that the tiny discs, which are about 250 nanometers across (about 1/500 the width of a human hair), would be injected directly into the desired location in the brain. From there, they could be activated at any time simply by applying a magnetic field outside the body. The new particles could quickly find applications in biomedical research, and eventually, after sufficient testing, might be applied to clinical uses.

The development of these nanoparticles is described in the journal Nature Nanotechnology, in a paper by Polina Anikeeva, a professor in MIT’s departments of Materials Science and Engineering and Brain and Cognitive Sciences, graduate student Ye Ji Kim, and 17 others at MIT and in Germany.

Nov 7, 2024

Animal cells capable of photosynthesis created for the first time

Posted by in categories: bioengineering, biotech/medical

In an incredible feat that redefines biological boundaries, scientists have successfully engineered animal cells capable of photosynthesis.

This breakthrough, led by Professor Sachihiro Matsunaga at the University of Tokyo, could transform medical research and aid in advancing lab-grown meat production.

Photosynthesis, traditionally exclusive to plants, algae, and certain bacteria, is a process that uses sunlight, water, and carbon dioxide to produce oxygen and sugars – essentially “feeding” the organism.

Nov 5, 2024

Gene therapy Improves Eye Health and Reduces the Need for Anti-VEGF Injections in Age-Related Macular Degeneration

Posted by in categories: bioengineering, biotech/medical, genetics, life extension

RegenxBio, a publicly-traded biotech firm, released data this week from a Phase 2 clinical trial designed to test its leading genetic therapy product in patients with bilateral wet age-related macular degeneration (AMD). AMD is characterized by abnormal growth of blood vessels in the retina, and is a leading cause of loss of vision in elderly populations globally.

ABBV-RGX-314, developed in collaboration with AbbVie, offers the potential of a one-time treatment for wet AMD and other retinal conditions, including diabetic retinopathy. This is in contrast to existing treatments which rely on repeated intraocular injections of drugs that inhibit a protein known as Vascular Endothelial Growth Factor (VEGF), a protein responsible for the formation of new retinal blood vessels.

The ABBV-RGX-314 therapy is based on a an AAV8 viral vector as a delivery system. The AAV8 platform has been genetically engineered to encode an antibody that can inhibit VEGF for the long-term.

Nov 5, 2024

Scientists bioengineer mussel-inspired bacteria that sticks to and break down plastic waste

Posted by in category: bioengineering

The modified bacteria clings 400 times better to plastic than normal bacteria.

Nov 5, 2024

Stanford researchers develop molecule that forces cancer cells to kill themselves

Posted by in categories: bioengineering, biological, biotech/medical

The researchers’ recently published study describes a way to re-activate apoptosis in mutated cells, which would amount to forcing cancer to self-destruct through a bioengineered, bonding molecule.

Gerald Crabtree, one of the study’s authors and a professor of development biology, said he had the idea while hiking through Kings Mountain, California, during the pandemic period. The new compound would have to bind two proteins which already exist in the cancerous cells, turning apoptosis back on and making the cancer kill itself.

“We essentially want to have the same kind of specificity that can eliminate 60 billion cells with no bystanders,” Crabtree said, so that no cell gets destroyed if it isn’t the proper target of this new killing mechanism. The two proteins in question are known as BCL6, an oncogene which suppresses apoptosis-promoting genes in the B-cell lymphoma, and CDK9, an enzyme that catalyzes gene activation instead.

Nov 4, 2024

Physics for excited neurons

Posted by in categories: bioengineering, genetics, neuroscience, physics

“Badass”. That was the word Harvard University neuroscientist Steve Ramirez used in a Tweet to describe research published online by fellow neuroscientist Ali Güler and colleagues in the journal Nature Neuroscience last March. Güler’s group, based at the University of Virginia in the US, reported having altered the behaviour of mice and other animals by using a magnetic field to remotely activate certain neurons in their brains. For Ramirez, the research was an exciting step forward in the emerging field of “magnetogenetics”, which aims to use genetic engineering to render specific regions of the brain sensitive to magnetism – in this case by joining proteins containing iron with others that control the flow of electric current through nerve-cell membranes.

By allowing neurons deep in the brain to be switched on and off quickly and accurately as well as non-invasively, Ramirez says that magnetogenetics could potentially be a boon for our basic understanding of behaviour and might also lead to new ways of treating anxiety and other psychological disorders. Indeed, biologist Kenneth Lohmann of the University of North Carolina in the US says that if the findings of Güler and co-workers are confirmed then magnetogenetics would constitute a “revolutionary new tool in neuroscience”

The word “if” here is important. In a paper posted on the arXiv preprint server in April last year and then published in a slightly revised form in the journal eLife last August, physicist-turned-neuroscientist Markus Meister of the California Institute of Technology laid out a series of what he describes as “back-of-the-envelope” calculations to check the physical basis for the claims made in the research. He did likewise for an earlier magnetogenetics paper published by another group in the US as well as for research by a group of scientists in China positing a solution to the decades-old problem of how animals use the Earth’s magnetic field to navigate – papers that were also published in Nature journals.

Page 4 of 22112345678Last