БЛОГ

Archive for the ‘biological’ category: Page 102

Mar 17, 2022

Exocortex: Thought this might be of some interest

Posted by in categories: biological, computing, neuroscience, transhumanism

An is an external information processing system that augments the brain’s biological high-level cognitive processes.

An individual’s would be comprised of external memory modules 0, processors 0, IO devices and software systems that would interact with, and augment, a person’s biological brain. Typically this interaction is described as being conducted through a direct brain-computer interface 0, making these extensions functionally part of the individual’s mind.

Individuals with significant exocortices can be classified as transhuman beings.

Mar 17, 2022

The World in 2300: Top 9 Future Technologies

Posted by in categories: biological, bitcoin, finance, mathematics, physics, Ray Kurzweil, robotics/AI, singularity

This video covers the world in 2,300 and its future technologies. Watch this next video about the world in 2200: https://bit.ly/3htaWEr.
► BlockFi: Get Up To $250 In Bitcoin: https://bit.ly/3rPOf1V
► M1 Finance: Open A Roth IRA And Get Up To $500: https://bit.ly/3KHZvq0
► Jarvis AI: Write 5x Faster With Artificial Intelligence: https://bit.ly/3HbfvhO
► SurfShark: Secure Your Digital Life (83% Off): https://surfshark.deals/BUSINESSTECH
► Udacity: 75% Off All Courses (Biggest Discount Ever): https://bit.ly/3j9pIRZ
► Brilliant: Learn Science And Math Interactively (20% Off): https://bit.ly/3HAznLL
► Business Ideas Academy: Start A Business You Love: https://bit.ly/3KI7B1S

SOURCES:
https://www.futuretimeline.net.
• The Future of Humanity (Michio Kaku): https://amzn.to/3Gz8ffA
• The Singularity Is Near: When Humans Transcend Biology (Ray Kurzweil): https://amzn.to/3ftOhXI
• Physics of the Future (Michio Kaku): https://amzn.to/33NP7f7
https://science.howstuffworks.com/science-vs-myth/everyday-m…tation.htm.

Continue reading “The World in 2300: Top 9 Future Technologies” »

Mar 12, 2022

A bio-inspired mechano-photonic artificial synapse

Posted by in categories: biological, nanotechnology, robotics/AI

Multifunctional and diverse artificial neural systems can incorporate multimodal plasticity, memory and supervised learning functions to assist neuromorphic computation. In a new report, Jinran Yu and a research team in nanoenergy, nanoscience and materials science in China and the US., presented a bioinspired mechano-photonic artificial synapse with synergistic mechanical and optical plasticity. The team used an optoelectronic transistor made of graphene/molybdenum disulphide (MoS2) heterostructure and an integrated triboelectric nanogenerator to compose the artificial synapse. They controlled the charge transfer/exchange in the heterostructure with triboelectric potential and modulated the optoelectronic synapse behaviors readily, including postsynaptic photocurrents, photosensitivity and photoconductivity. The mechano-photonic artificial synapse is a promising implementation to mimic the complex biological nervous system and promote the development of interactive artificial intelligence. The work is now published on Science Advances.

Brain-inspired neural networks.

The human brain can integrate cognition, learning and memory tasks via auditory, visual, olfactory and somatosensory interactions. This process is difficult to be mimicked using conventional von Neumann architectures that require additional sophisticated functions. Brain-inspired neural networks are made of various synaptic devices to transmit information and process using the synaptic weight. Emerging photonic synapse combine the optical and electric neuromorphic modulation and computation to offer a favorable option with high bandwidth, fast speed and low cross-talk to significantly reduce power consumption. Biomechanical motions including touch, eye blinking and arm waving are other ubiquitous triggers or interactive signals to operate electronics during artificial synapse plasticization. In this work, Yu et al. presented a mechano-photonic artificial synapse with synergistic mechanical and optical plasticity.

Mar 12, 2022

Synthetic synapses get more like a real brain

Posted by in categories: biological, chemistry, food, nanotechnology, robotics/AI, supercomputing

The human brain, fed on just the calorie input of a modest diet, easily outperforms state-of-the-art supercomputers powered by full-scale station energy inputs. The difference stems from the multiple states of brain processes versus the two binary states of digital processors, as well as the ability to store information without power consumption—non-volatile memory. These inefficiencies in today’s conventional computers have prompted great interest in developing synthetic synapses for use in computers that can mimic the way the brain works. Now, researchers at King’s College London, UK, report in ACS Nano Letters an array of nanorod devices that mimic the brain more closely than ever before. The devices may find applications in artificial neural networks.

Efforts to emulate biological synapses have revolved around types of memristors with different resistance states that act like memory. However, unlike the the devices reported so far have all needed a reverse polarity to reset them to the initial state. “In the brain a change in the changes the output,” explains Anatoly Zayats, a professor at King’s College London who led the team behind the recent results. The King’s College London researchers have now been able to demonstrate this brain-like behavior in their synaptic synapses as well.

Zayats and team build an array of gold nanorods topped with a polymer junction (poly-L-histidine, PLH) to a metal contact. Either light or an electrical voltage can excite plasmons—collective oscillations of electrons. The plasmons release hot electrons into the PLH, gradually changing the chemistry of the polymer, and hence changing it to have different levels of conductivity or light emissivity. How the polymer changes depends on whether oxygen or hydrogen surrounds it. A chemically inert nitrogen chemical environment will preserve the state without any energy input required so that it acts as non-volatile memory.

Mar 11, 2022

Fact check: Is Russia’s claim of US-owned biowarfare labs in Ukraine true?

Posted by in categories: biological, military

Mar 11, 2022

Why human beings become fragile after the age of 65

Posted by in category: biological

A study shows how a deficiency of coenzyme Q10, which charges our biological batteries, reduces mobility and the capacity for the generation of this vital molecule.

Mar 11, 2022

After a Nuclear War

Posted by in categories: biological, existential risks

What would come after a nuclear war and what would be the consequences for Earth´s biosphere. And would some other intelligent species eventually evolve?


Meet the Species That May Come After Humans.

Mar 11, 2022

Posthuman Mimesis, Keynote I: Cyborg Experiments (Kevin Warwick)

Posted by in categories: biological, cyborgs, robotics/AI

http://www.homomimeticus.eu/
Part of the ERC-funded project Homo Mimeticus, the Posthuman Mimesis conference (KU Leuven, May 2021) promoted a mimetic turn in posthuman studies. In the first keynote Lecture, Prof. Kevin Warwick (U of Coventry) argued that our future will be as cyborgs – part human, part technology. Kevin’s own experiments will be used to explain how implant and electrode technology can be employed to create cyborgs: biological brains for robots, to enable human enhancement and to diminish the effects of neural illnesses. In all cases the end result is to increase the abilities of the recipients. An indication is given of a number of areas in which such technology has already had a profound effect, a key element being the need for an interface linking a biological brain directly with computer technology. A look will be taken at future concepts of being, for posthumans this possibly involving a click and play body philosophy. New, much more powerful, forms of communication will also be considered.

HOM Videos is part of an ERC-funded project titled Homo Mimeticus: Theory and Criticism, which has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement n°716181)
Follow HOM on Twitter: https://twitter.com/HOM_Project.

Continue reading “Posthuman Mimesis, Keynote I: Cyborg Experiments (Kevin Warwick)” »

Mar 11, 2022

These Advanced Nootropics Are Specially Formulated to Help Fight Mental Fatigue

Posted by in categories: biological, neuroscience

Supplement companies often market nootropics like they’re some kind of new scientific discovery. However, human beings have been using nootropics to boost mental performance for millennia. What’s different now is that scientists actually understand how nootropics work, and which ones have synergistic interactions with each other.

This new understanding is what helped TruBrain create Brain Food.

Brain Food is a nutritional supplement that has been methodically engineered by TruBrain’s team of scientists to create the biological conditions necessary for peak cognitive performance. Like a lot of other nootropic supplements, Brain Food contains the so-called “everyman stack” of caffeine and l-theanine, a combo humans have been taking for thousands of years in the form of green tea.

Mar 9, 2022

Biological Anchors: A Trick That Might Or Might Not Work

Posted by in categories: biological, robotics/AI

I’ve been trying to review and summarize Eliezer Yudkowksy’s recent dialogues on AI safety. Previously in sequence: Yudkowsky Contra Ngo On Agents. Now we’re up to Yudkowsky contra Cotra on biological anchors, but before we get there we need to figure out what Cotra’s talking about and what’s going on.

The Open Philanthropy Project (“Open Phil”) is a big effective altruist foundation interested in funding AI safety. It’s got $20 billion, probably the majority of money in the field, so its decisions matter a lot and it’s very invested in getting things right. In 2020, it asked senior researcher Ajeya Cotra to produce a report on when human-level AI would arrive. It says the resulting document is “informal” — but it’s 169 pages long and likely to affect millions of dollars in funding, which some might describe as making it kind of formal. The report finds a 10% chance of “transformative AI” by 2031, a 50% chance by 2052, and an almost 80% chance by 2100.

Eliezer rejects their methodology and expects AI earlier (he doesn’t offer many numbers, but here he gives Bryan Caplan 50–50 odds on 2030, albeit not totally seriously). He made the case in his own very long essay, Biology-Inspired AGI Timelines: The Trick That Never Works, sparking a bunch of arguments and counterarguments and even more long essays.