Toggle light / dark theme

Less than a millionth of a billionth of a second long, attosecond X-ray pulses allow researchers to peer deep inside molecules and follow electrons as they zip around and ultimately initiate chemical reactions.

Scientists at the Department of Energy’s SLAC National Accelerator Laboratory devised a method to generate X-ray laser bursts lasting hundreds of attoseconds (or billionths of a billionth of a second) in 2018. This technique, known as X-ray laser-enhanced attosecond pulse generation (XLEAP), enables researchers to investigate how electrons racing about molecules initiate key processes in biology, chemistry, materials science, and other fields.

“Electron motion is an important process by which nature can move energy around,” says SLAC scientist James Cryan. “A charge is created in one part of a molecule and it transfers to another part of the molecule, potentially kicking off a chemical reaction. It’s an important piece of the puzzle when you start to think about photovoltaic devices for artificial photosynthesis, or charge transfer inside a molecule.”

Artificial intelligence and machine learning hardware research have concentrated on building photonic synapses and neurons and combining them to do fundamental forms of neural-type processing. However, complex processing methods found in human brains—such as reinforcement learning and dendritic computation—are more challenging to replicate directly in hardware.

A new study contributes to closing the “hardware gap” by creating an “Optomemristor” device that responds to numerous electronic and photonic inputs at the same time. The diverse biophysical mechanisms that govern the functions of the brain’s neurons and synapses allow for complex learning and processing in the mammalian brain.

The chalcogenide thin-film technology interacts with both light and electrical impulses to mimic multifactor biological computations in mammalian brains while spending very little energy.

Would start with scanning and reverse engineering brains of rats, crows, pigs, chimps, and end on the human brain. Aim for completion by 12/31/2025. Set up teams to run brain scans 24÷7÷365 if we need to, and partner w/ every major neuroscience lab in the world.


If artificial intelligence is intended to resemble a brain, with networks of artificial neurons substituting for real cells, then what would happen if you compared the activities in deep learning algorithms to those in a human brain? Last week, researchers from Meta AI announced that they would be partnering with neuroimaging center Neurospin (CEA) and INRIA to try to do just that.

Through this collaboration, they’re planning to analyze human brain activity and deep learning algorithms trained on language or speech tasks in response to the same written or spoken texts. In theory, it could decode both how human brains —and artificial brains—find meaning in language.

By comparing scans of human brains while a person is actively reading, speaking, or listening with deep learning algorithms given the same set of words and sentences to decipher, researchers hope to find similarities as well as key structural and behavioral differences between brain biology and artificial networks. The research could help explain why humans process language much more efficiently than machines.

“The Earth has entered a radically new era, understood by scientists as the Anthropocene: a time when humanity reckons with massive geologic and biospheric forces we, as anthropos, have set in motion. The agency of Nature and the reality of humanity as a collective geologic force is becoming understood differently, even within the Western paradigm. It is a new world our children will inherit, for if humanity is to survive, we must come into new realizations of our place within the planetary life-support systems. To lay a path for future generations through the evolutionary steps that humanity must now take to learn to live in balance with the planet, science must come to balance with Spirit.” ―Oberon Zell, GaeaGenesis.

#OberonZell #GaeaGenesis #GaiaHypothesis #SyntellectHypothesis #GlobalMind #theosophy #consciousness


In the early 1970s, celebrated philosopher and mystic Oberon Zell was the first to propose the radical idea that the biosphere of Earth was a single living superorganism. His initial article on the subject electrified the emerging modern movement of Earth-based spirituality, generating volumes of correspondence, lecture tours, and further articles in various journals and books.

The excitement was the result of a simple yet profound idea. Imagine for a moment that Earth is alive. Not just teeming with living things, but a living, vital organism encompassing the whole of the planet. This is how Oberon Zell imagines it in GaeaGenesis 0, but it is more than imagination or mere metaphor. GaeaGenesis is the first work to fully integrate the mythological, spiritual, biological, and social history of what has become known as the Gaea Thesis. It builds upon this history by exploring the profound implications of the thesis, which is as significant to our understanding of the world and our place in it as the heliocentric theory of the solar system and Darwin’s theory of evolution once were.

For years, the brain has been thought of as a biological computer that processes information through traditional circuits, whereby data zips straight from one cell to another. While that model is still accurate, a new study led by Salk Professor Thomas Albright and Staff Scientist Sergei Gepshtein shows that there’s also a second, very different way that the brain parses information: through the interactions of waves of neural activity. The findings, published in Science Advances on April 22, 2022, help researchers better understand how the brain processes information.

“We now have a new understanding of how the computational machinery of the brain is working,” says Albright, the Conrad T. Prebys Chair in Vision Research and director of Salk’s Vision Center Laboratory. “The model helps explain how the brain’s underlying state can change, affecting people’s attention, focus, or ability to process information.”

Researchers have long known that waves of electrical activity exist in the brain, both during sleep and wakefulness. But the underlying theories as to how the brain processes information—particularly sensory information, like the sight of a light or the sound of a bell—have revolved around information being detected by specialized brain cells and then shuttled from one neuron to the next like a relay.

Last week, NASA’s Perseverance Rover captured a gorgeous view of Phobos eclipsing the Sun, from the surface of Mars. From the point of view of any Martian microbes lurking out there, the eclipse may have seemed more ominous (yeah ok, there might not be living organisms up there, let alone ones sentient enough to grasp the concept of an eclipse) as the moon is destined by physics to one day slam into the red planet.

Phobos – the closest of Mars’ two moons – is set to get ever closer to the planet, before its final descent, while Deimos will drift ever outwards until it leaves Mars’ orbit.

Award-winning author and futurist Amy Webb examines the world of synthetic biology in her book “The Genesis Machine.” She sits down with Hari Sreenivasan to discuss the potential and the concerns of redesigning our lives.

Originally aired on April 28, 2022.

For more from Amanpour and Company, including full episodes, click here: https://to.pbs.org/2NBFpjf.

Like Amanpour and Company on Facebook: https://bit.ly/2HNx3EF

A team of researchers at Seoul National University has created a stronger and faster hydrogel actuator by combining turgor design and electro-osmosis. In their paper published in the journal Science, the group describes their approach and how well the resulting actuator performed when tested in a real-world experiment. Zhen Jiang and Pingan Song, with the University of Southern Queensland, outline some of the difficulties researchers have faced in trying to create hydrogels that imitate biological organisms and comment on the work done by the team in Korea in a Perspective article published in the same journal issue.

Hydrogels, as their name suggests, are gels made with a water base. Roboticists have been studying them closely for several years. The goal is to create soft actuators, which are deformable components that are able to interact with the environment in desired ways. To succeed, the actuator needs to be able to convert some form of energy into mechanical work, similar in some sense to human muscles. To make them more useful, scientists would like them to have stronger actuation forces than are now possible and to respond faster when the need arises. In this new effort, the researchers have taken another step toward achieving both goals.

The team created a hydrogel using standard techniques but enclosed it in a highly osmotic and stiff wrapping. The stiffness was designed to contain a swelling environment as a liquid made its way into the turgor cell-like construction. This allowed pressure to build up, and as it did so, it exerted a force against nearby objects. Testing of the cell showed it created enough force (730 N) to split a common building brick. The researchers note that such force was approximately 1,000 times greater than any other known hydrogel. And to speed up the action, the researchers applied an electric current, which drove the actuation speed to 19 times that of its normal osmotic rate.