БЛОГ

Archive for the ‘biological’ category: Page 119

Aug 4, 2021

Genetic insights into biological mechanisms governing human ovarian ageing

Posted by in categories: biological, genetics, life extension

Hundreds of genetic loci associated with age at menopause, combined with experimental evidence in mice, highlight mechanisms of reproductive ageing across the lifespan.

Aug 3, 2021

RNA CRISPR gene editing boosts gene knockdown in human cells

Posted by in categories: bioengineering, biological, biotech/medical, chemistry, genetics

Modified RNA CRISPR boosts gene knockdown in human cells.


In the latest of ongoing efforts to expand technologies for modifying genes and their expression, researchers in the lab of Neville Sanjana, PhD, at the New York Genome Center (NYGC) and New York University (NYU) have developed chemically modified guide RNAs for a CRISPR system that targets RNA instead of DNA. These chemically-modified guide RNAs significantly enhance the ability to target – trace, edit, and/or knockdown – RNA in human cells.

Longevity. Technology: In the study published in Cell Chemical Biology, the research team explores a range of different RNA modifications and details how the modified guides increase efficiencies of CRISPR activity from 2-to 5-fold over unmodified guides. They also show that the optimised chemical modifications extend CRISPR targeting activity from 48 hours to four days.

Continue reading “RNA CRISPR gene editing boosts gene knockdown in human cells” »

Jul 31, 2021

Acoustic tweezers can pick up objects without physical contact

Posted by in categories: biological, chemistry, particle physics

Researchers from Tokyo Metropolitan University have developed a new technology which allows non-contact manipulation of small objects using sound waves. They used a hemispherical array of ultrasound transducers to generate a 3D acoustic field that stably trapped and lifted a small polystyrene ball from a reflective surface. Their technique employs a method similar to laser trapping in biology, but adaptable to a wider range of particle sizes and materials.

The ability to move objects without touching them might sound like magic, but in the world of biology and chemistry, technology known as has been helping scientists use light to move microscopic objects around for many years. In fact, half of the 2018 Nobel Prize for Physics, awarded to Arthur Ashkin (1922–2020) was in recognition of the remarkable achievements of this technology. But the use of laser light is not without its failings, particularly the limits placed on the properties of the objects which can be moved.

Enter acoustic trapping, an alternative that uses sound instead of optical waves. Sound waves may be applied to a wider range of sizes and materials, and successful manipulation is now possible for millimeter-sized particles. Though they haven’t been around for as long as their optical counterparts, acoustic levitation and manipulation show exceptional promise for both lab settings and beyond. But the that need to be surmounted are considerable. In particular, it is not easy to individually and accurately control vast arrays of ultrasound transducers in real time, or to get the right sound fields to lift objects far from the transducers themselves, particularly near surfaces that reflect .

Jul 31, 2021

Dietary CD38 Inhibitors: Are They Correlated With Biological Age?

Posted by in categories: biological, food, life extension

Apigenin, quercetin, luteolin data: USDA Database for the Flavonoid.
Content of Selected Foods.
https://www.ars.usda.gov/arsuserfiles/80400525/data/flav/flav_r03-1.pdf.

Kuromanin data: http://phenol-explorer.eu/contents/polyphenol/9

Continue reading “Dietary CD38 Inhibitors: Are They Correlated With Biological Age?” »

Jul 26, 2021

Acoustic Tweezers Can Pick Objects Up With Sound Waves – Without Any Physical Contact

Posted by in categories: biological, chemistry, particle physics

Hemispherical array of ultrasound transducers lifts objects off reflective surfaces.

Researchers from Tokyo Metropolitan University have developed a new technology which allows non-contact manipulation of small objects using sound waves. They used a hemispherical array of ultrasound transducers to generate a 3D acoustic fields which stably trapped and lifted a small polystyrene ball from a reflective surface. Although their technique employs a method similar to laser trapping in biology, adaptable to a wider range of particle sizes and materials.

Continue reading “Acoustic Tweezers Can Pick Objects Up With Sound Waves – Without Any Physical Contact” »

Jul 23, 2021

An organic transistor with light intensity-dependent active photoadaptation

Posted by in categories: biological, robotics/AI

An organic transistor that incorporates two bulk heterojunctions can exhibit active photoadaptation behaviour for light intensities that range over six orders of magnitude.


The development of artificial visual systems that mimic biological systems requires devices that can autonomously adapt their response to varying stimuli. However, emulating biological feedforward visual adaptation is challenging and requires complementary photoexcitation and inhibition, ideally in a single device. Here we show that an organic transistor that incorporates two bulk heterojunctions is capable of light intensity-dependent active photoadaptation. The approach couples the photovoltaic effect in bulk heterojunctions with electron trapping in the dielectric layer, allowing adaptive modulation of the carrier concentration of the transistor. Our device exhibits active photoadaptation behaviour for light intensities ranging over six orders of magnitude (1 to 106 cd m−2).

Jul 23, 2021

Quantum biology

Posted by in categories: biological, quantum physics

Circa 2012


Could biological systems have evolved to find the optimal quantum solutions to the problems thrown at them by nature? This Review presents an overview of the possible quantum effects seen in photosynthesis, avian magnetoreception and several other biological systems.

Jul 20, 2021

Scientists Warn of “Bleak Cyborg Future” From Brain-Computer Interfaces

Posted by in categories: biological, computing, cyborgs, law, neuroscience

Researchers warn of the potential social, ethical, and legal consequences of technologies interacting heavily with human brains.

Surpassing the biological limitations of the brain and using one’s mind to interact with and control external electronic devices may sound like the distant cyborg future, but it could come sooner than we think.

Researchers from Imperial College London conducted a review of modern commercial brain-computer interface (BCI) devices, and they discuss the primary technological limitations and humanitarian concerns of these devices in APL Bioengineering, from AIP Publishing.

Jul 20, 2021

New Protein Folding AI Just Made a ‘Once In a Generation’ Advance in Biology

Posted by in categories: biological, information science, mapping, particle physics, robotics/AI

The tool next examines how one protein’s amino acids interact with another within the same protein, for example, by examining the distance between two distant building blocks. It’s like looking at your hands and feet fully stretched out, versus in a backbend measuring the distance between those extremities as you “fold” into a yoga pose.

Finally, the third track looks at 3D coordinates of each atom that makes up a protein building block—kind of like mapping the studs on a Lego block—to compile the final 3D structure. The network then bounces back and forth between these tracks, so that one output can update another track.

The end results came close to those of DeepMind’s tool, AlphaFold2, which matched the gold standard of structures obtained from experiments. Although RoseTTAFold wasn’t as accurate as AlphaFold2, it seemingly required much less time and energy. For a simple protein, the algorithm was able to solve the structure using a gaming computer in about 10 minutes.

Jul 17, 2021

Dr. Charles Brenner Ph.D. — City of Hope — NAD Coenzymes, Metabolic Stress, And Novel Interventions

Posted by in categories: biological, biotech/medical, health, neuroscience

NAD Coenzymes, Metabolic Stress, And Novel Preventative And Therapeutic Interventions — Dr. Charles Brenner, Ph.D., City of Hope.


Dr. Charles Brenner Ph.D. is the Alfred E Mann Family Foundation Chair in Diabetes and Cancer Metabolism, and Professor and Chair of the Department of Diabetes & Cancer Metabolism, at the City of Hope Comprehensive Cancer Center (https://www.cityofhope.org/faculty/charles-brenner).

Continue reading “Dr. Charles Brenner Ph.D. — City of Hope — NAD Coenzymes, Metabolic Stress, And Novel Interventions” »