Jan 28, 2020
‘Ageotypes’ provide window into how individuals age, Stanford study reports
Posted by Steve Hill in category: biological
Stanford scientists have identified specific biological pathways along which individuals age over time.
Stanford scientists have identified specific biological pathways along which individuals age over time.
A provocative new study suggests the microbes that live in your gut could reveal critical details about your health — and your death.
Godzilla is back in cinemas, and he’s big. Since his first awakening the radioactive, fire-spewing kaiju has grown 60 metres and put on more than 150 000 tons. Godzilla is now 30 storeys tall and weighs as much as a cruise ship. s biology. If Godzilla were real, he would be an incredible specimen.
Weight problems Godzilla would weigh 146 000 tons, according to our keen analysis of the 2014 Godzilla toy and a formula developed by palaeontologists to work out the mass of bipedal dinosaurs.
0,00016 x (circumference of femur in millimetres) 2,73 = mass in kilograms 0,00016 x (Godzilla’s femur: 24 200 mm) 2,73 = 148 571 645 kilograms, or nearly 150 000 tons.
Am Nat. 2017 Nov;190:694–706. doi: 10.1086÷693854. Epub 2017 Sep 5.
Biological invasions offer interesting situations for observing how novel interactions between closely related, formerly allopatric species may trigger phenotypic evolution in situ. Assuming that successful invaders are usually filtered to be competitively dominant, invasive and native species may follow different trajectories. Natives may evolve traits that minimize the negative impact of competition, while trait shifts in invasives should mostly reflect expansion dynamics, through selection for colonization ability and transiently enhanced mutation load at the colonization front. These ideas were tested through a large-scale common-garden experiment measuring life-history traits in two closely related snail species, one invasive and one native, co-occurring in a network of freshwater ponds in Guadeloupe. We looked for evidence of recent evolution by comparing uninvaded or recently invaded sites with long-invaded ones.
Computers can beat humans at sophisticated tasks like the game Go, but can they also drive a car, … [+] speak languages, play soccer, and perform a myriad of other tasks like humans? Here’s what AI can learn from biology.
A few years back, DeepMind’s Demis Hassabis famously prophesized that AI and neuroscience will positively feed into each other in a “virtuous circle.” If realized, this would fundamentally expand our insight into intelligence, both machine and human.
We’ve already seen some proofs of concept, at least in the brain-to-AI direction. For example, memory replay, a biological mechanism that fortifies our memories during sleep, also boosted AI learning when abstractly appropriated into deep learning models. Reinforcement learning, loosely based on our motivation circuits, is now behind some of AI’s most powerful tools.
Continue reading “How Researchers Used AI to Better Understand Biological Vision” »
Computational biology is the combined application of math, statistics and computer science to solve biology-based problems. Examples of biology problems are: genetics, evolution, cell biology, biochemistry. [1].
Author at The Secrets of the Universe, I am a Biology and Chemistry high school student from Poland. I love writing about conquest and research in space and future possibilities for Humanity and Astrophysics.
Faced with mountains of image and audio data, researchers are turning to artificial intelligence to answer pressing ecological questions.
Claims of a relationship between AI and Neuroscience are more common than ever. They are often used to imply a higher chance of success for a technology. Are these claims true or just a hype?