Archive for the ‘biological’ category: Page 161
Jul 16, 2019
Intel’s neuromorphic system surfs next wave in brain-inspired research
Posted by Quinn Sena in categories: biological, robotics/AI
A neuromorphic computer that can simulate 8 million neurons is in the news. The term “neuromorphic” suggests a design that can mimic the human brain. And neuromorphic computing? It is described as using very large scale integration systems with electric analog circuits imitating neuro-biological architectures in our system.
This is where Intel steps in, and significantly so. The Loihi chip applies the principles found in biological brains to computer architectures. The payoff for users is that they can process information up to 1,000 times faster and 10,000 times more efficiently than CPUs for specialized applications, e.g., sparse coding, graph search and constraint-satisfaction problems.
Its news release on Monday read “Intel’s Pohoiki Beach, a 64-Chip Neuromorphic System, Delivers Breakthrough Results in Research Tests.” Pohoiki Beach is Intel’s latest neuromorphic system.
Jul 15, 2019
Human bioacoustic biology: Acoustically anomalous vocal patterns used to detect biometric expressions relating to structural integrity and states of health
Posted by Richard Christophr Saragoza in categories: biological, health, privacy
Computerized analyses of acoustically anomalous vocal patterns are being used as biomarkers for predictive, prediagnostic, and efficient management of individual biological form and function. To da…
Jul 14, 2019
This Curtain Of Algae Is Cleaning The Air
Posted by Brady Hartman in category: biological
This is an algae “biocurtain” and it’s cleaning up the air. 💚.
Jul 11, 2019
The Chrysalis Conjecture: Solution to the Fermi Paradox?
Posted by Quinn Sena in categories: biological, existential risks, physics
It appears that the physics of information holds the key to the solution of the Fermi Paradox — indications are that we most likely live in a “Syntellect Chrysalis” (or our “second womb”) instead of a “cosmic jungle.”
Within the next few decades, we’ll transcend our biology by leaving today’s organic Chrysalis behind, by leaving our second womb, by leaving our cradle, if speaking in tropes.
This particular version of “human universe” is what we “see” from within our dimensional cocoon, it’s a construct of our minds but by no means represents objective reality “out there” including our most advanced models such as M-theory that are only approximations at best.
Jul 11, 2019
Origin of life insight: Peptides can form without amino acids
Posted by Xavier Rosseel in category: biological
Peptides, one of the fundamental building blocks of life, can be formed from the primitive precursors of amino acids under conditions similar to those expected on the primordial Earth, finds a new UCL study.
The findings, published in Nature, could be a missing piece of the puzzle of how life first formed.
“Peptides, which are chains of amino acids, are an absolutely essential element of all life on Earth. They form the fabric of proteins, which serve as catalysts for biological processes, but they themselves require enzymes to control their formation from amino acids,” explained the study’s lead author, Dr Matthew Powner (UCL Chemistry).
Jul 11, 2019
Small Temperature Bumps Can Cause Big Arctic Methane Burps
Posted by Brady Hartman in category: biological
Warming can encourage the growth of microbes in permafrost that produce more greenhouse gases.
- By Chelsea Harvey, E&E News on July 10, 2019
Jul 10, 2019
Could Manipulating the Microbiome Treat Food Allergies?
Posted by Genevieve Klien in categories: biological, health
As evidence grows that gut bacteria play roles in the development and persistence of food allergies, researchers begin to explore microbe-based interventions.
Jul 9, 2019
Neuroscience and artificial intelligence can help improve each other
Posted by Paul Battista in categories: bioengineering, biological, information science, neuroscience, robotics/AI
Despite their names, artificial intelligence technologies and their component systems, such as artificial neural networks, don’t have much to do with real brain science. I’m a professor of bioengineering and neurosciences interested in understanding how the brain works as a system – and how we can use that knowledge to design and engineer new machine learning models.
In recent decades, brain researchers have learned a huge amount about the physical connections in the brain and about how the nervous system routes information and processes it. But there is still a vast amount yet to be discovered.
At the same time, computer algorithms, software and hardware advances have brought machine learning to previously unimagined levels of achievement. I and other researchers in the field, including a number of its leaders, have a growing sense that finding out more about how the brain processes information could help programmers translate the concepts of thinking from the wet and squishy world of biology into all-new forms of machine learning in the digital world.
Jul 8, 2019
This design exchange consortium could accelerate the synthetic biology industry
Posted by Klaus Baldauf in categories: bioengineering, biological, finance
Introducing the SBOL Industrial Consortium
To this end, a group of companies are now launching a pre-competitive consortium to support the industrial application of these technologies. The SBOL Industrial Consortium is a non-profit organization supporting innovation, dissemination, and integration of SBOL standards, tools and practices for practical applications in an industrial environment. The six founding companies of the consortium are Raytheon BBN Technologies, Amyris, Doulix, IDT, Shipyard Toolchains, TeselaGen, and Zymergen, representing a diverse set of interests and business models across the synthetic biology community.
The SBOL Industrial Consortium will facilitate industry-focused development of representational technologies in several ways. The consortium will help coordinate development of standards and tools, both with the academic community and from member to member, in order to ensure that the SBOL standards are well-tuned to support the specific industrial needs of the members of the consortium. Financial support will also be provided by the consortium for selected projects and activities, and for key pieces of community infrastructure.