БЛОГ

Archive for the ‘biological’ category: Page 210

Jun 9, 2016

Chemical reaction lights the way for tracking microRNA in living organisms

Posted by in categories: biological, genetics

The ability to track molecular events inside the cells of living organisms offers a powerful window into fundamental biological processes, but methods for visualizing RNA in vivo without interfering with cell processes have been elusive. Now, researchers have developed a light-induced chemical reaction that accomplishes this feat in live zebrafish embryos (ACS Cent. Sci. 2016, DOI: 10.1021/acscentsci.6b00054). It is the first technique for detecting specific strings of nucleic acids in live vertebrates that doesn’t require genetically modifying the organism. What’s more, it’s sensitive enough to visualize the expression of microRNAs, small noncoding RNAs that act as puppetmasters of gene expression.

To do the reaction, chemical biologist Nicolas Winssinger, biochemist Marcos Gonzalez-Gaitan, and their colleagues at the University of Geneva designed two nucleic acid probes that each complement and bind to adjacent halves of a target microRNA sequence. The researchers conjugated one probe to a ruthenium complex that absorbs visible light and the other to a fluorogenic rhodamine that lights up when its azide bonds are cleaved. When the probes attach to the target sequence, the two reagents come close enough to react. Shining a light on the sample activates the ruthenium which then reduces the azide in the rhodamine conjugate, releasing its fluorescence. The dependence on external light allows researchers to control when the reporting reaction happens, Winssinger explains.

The team first developed the system three years ago (Chem. 2013, DOI: 10.1002/chem.201300060) for use in cultured cells; here, they adapted it for use in just-fertilized zebrafish embryos. “That’s really not trivial,” says Winssinger. The probes had to be nontoxic, stable for a day or more, and powerful enough to work even after being diluted through cell division.

Continue reading “Chemical reaction lights the way for tracking microRNA in living organisms” »

Jun 9, 2016

A group of Japanese high-schoolers have found a way to hatch an egg, without the egg!

Posted by in categories: biological, education

Now biology classes can observe development while still keeping the chick alive!

The clip is a segment from Japanese educational TV show “Gatten” that aired 05.18.2016. Captions, appropriately, by Spoon & Tamago (tamago means ‘egg’ in Japanese)

Read more

Jun 6, 2016

A former NASA chief just launched this AI startup to turbocharge neural computing

Posted by in categories: biological, computing, military, neuroscience, robotics/AI, security

Good for him.


A new company launched Monday by former NASA chief Dan Goldin aims to deliver a major boost to the field of neural computing.

KnuEdge’s debut comes after 10 years in stealth; formerly it was called Intellisis. Now, along with its launch, it’s introducing two products focused on neural computing: KnuVerse, software that focuses on military-grade voice recognition and authentication, and KnuPath, a processor designed to offer a new architecture for neural computing.

Continue reading “A former NASA chief just launched this AI startup to turbocharge neural computing” »

Jun 6, 2016

Scientists build gene circuits capable of complex computation

Posted by in category: biological

BOSTON, June 3 (UPI) — Until now, synthetic biological systems have focused exclusively on either analog or digital computation. Researchers at MIT have devised a technique for creating cellular gene circuits capable of complex computation.

Analog computation, also called continuous computation, is the type of processing happening as the human eye adjusts to changing light conditions. Digital computation involves binary decision making, on or off processes.

The new synthetic cellular circuitry designed by MIT scientists performs like a comparator, receiving analog input signals and converting them into digital output signals.

Continue reading “Scientists build gene circuits capable of complex computation” »

Jun 3, 2016

Animal-plant integration

Posted by in category: biological

LeafInsect

[Image: An animal that looks like a plant. From simple.wikipedia.org/wiki/Stick_insect#/media/File:LeafInsect.jpg.]

Future genetic engineering may create animals that can photosynthesize like plants. These animals would require less food because they will make some of it from sunlight. In principle, even humans could be modified this way!

There are already some natural cases of animal-plant integration. Some marine flatworms have algae living in their translucent bodies,between their cells. Increasing the degree of plant-animal integration further, the method used by coral and various other marine animals is to have symbiotic algae living, not between their cells (like the flatworms), but actually inside some of their cells. The algae are typically of the genus Symbiodinium, and live in “symbiosomes,” blobs inside the animal cells that hold the algae separate from the rest of the cell. Each symbiosome is a kind of really, really tiny terrarium (a “nanoterrarium”) maintained by the finely engineered nanotechnology device of nature we call the cell. The cells supply the algae, in its symbiosome home, with basic chemicals and exposure to light. In return the algae produce nutrients that the animals extract from the symbiosome and use. In coral, when these algae die the coral loses color and, if not reversed, itself dies in the phenomenon called “coral bleaching.”

Continue reading “Animal-plant integration” »

May 29, 2016

Meet the startups 3D printing living cells, editing genes and growing meat in laboratories

Posted by in categories: 3D printing, biological, cybercrime/malcode, food

Hacking o ser humano: a startups de impressão 3D de células vivas, edição de genes e de carne crescente em laboratórios.

Read more

May 25, 2016

Poverty marks a gene, predicting depression

Posted by in categories: biological, genetics, neuroscience

Not surprised;


A long line of research links poverty and depression. Now, a study by Duke University scientists shows how biology might underlie the depression experienced by high-risk adolescents whose families are socio-economically disadvantaged.

The study, published May 24, 2016 in the journal Molecular Psychiatry, combined genetics, brain imaging and behavioral data gathered as adolescents were followed for more than three years as part of a larger study.

Continue reading “Poverty marks a gene, predicting depression” »

May 25, 2016

Is aging inevitable? Not necessarily for sea urchins

Posted by in categories: biological, genetics, health, life extension

Sea urchins are remarkable organisms. They can quickly regrow damaged spines and feet. Some species also live to extraordinary old ages and—even more remarkably—do so with no signs of poor health, such as a decline in regenerative capacity or an increase in age-related mortality. These ocean Methuselahs even reproduce as if they were still youngsters.

MDI Biological Laboratory Associate Professor James A. Coffman, Ph.D., is studying the of sea urchins in hopes that a deeper understanding of the process of regeneration, which governs the regeneration of aging tissues as well as lost or damaged body parts, will lead to a deeper understanding of the aging process in humans, with whom sea urchins share a close genetic relationship.

In a paper recently published in Aging Cell, a leading journal in the field of aging biology, with Andrea G. Bodnar, Ph.D., of the Bermuda Institute of Ocean Studies, the scientists shed new light on the aging process in sea urchins, raising the prospect that the physical decline that typically accompanies aging is not inevitable.

Continue reading “Is aging inevitable? Not necessarily for sea urchins” »

May 18, 2016

Cosmic dust on Earth reveals clues to ancient atmosphere

Posted by in category: biological

The oldest space dust yet found on Earth suggests that the ancient atmosphere of Earth had significantly more oxygen than previously thought, a new study finds.

Although oxygen gas currently makes up about one-fifth of Earth’s air, there was at least 100,000 times less oxygen in the primordial atmosphere, researchers say. Oxygen easily reacts with other molecules, which means it readily gets bound to other elements and pulled from the atmosphere.

Previous research suggests that significant levels of oxygen gas started permanently building up in the atmosphere with the Great Oxidation Event, which occurred about 2.4 billion years ago. This event was most likely caused by cyanobacteria — microbes that, like plants, photosynthesize and release oxygen. [Infographic: Earth’s Atmosphere Top to Bottom].

Continue reading “Cosmic dust on Earth reveals clues to ancient atmosphere” »

May 14, 2016

Newly discovered microbe does something textbooks say is impossible: it lives without mitochondria

Posted by in category: biological

According to established scientific knowledge, complex cells (called eukaryotic cells) can’t survive without mitochondria — tiny organelles that control respiration and power movement and growth. You can think of them as tiny batteries converting energy so that cells can go about their business, but they perform other key jobs, too. They are, as the common adage goes, the powerhouse of the cell.

Now, scientists working in Canada and the Czech Republic have made a surprising discovery: a eukaryotic cell without these mitochondrial batteries. It’s an unprecedented find that’s likely to change our thinking about how some types of cells can exist and grow. In other words, life is more flexible than we thought.

“[Mitochondria] were considered to be absolutely indispensable components of the eukaryotic cell and the hallmark of the eukaryotic cell,” team leader, Anna Karnkowska from the University of British Columbia told Nell Greenfieldboyce at NPR.

Continue reading “Newly discovered microbe does something textbooks say is impossible: it lives without mitochondria” »