Toggle light / dark theme

Written By: — Singularity Hub

tobacco-plant

While computers scientists find new ways to supercharge computers, a team of plant scientists have demonstrated that they can supercharge a plant.

Hoping to speed up plant photosynthesis, researchers from the US and UK have successfully upgraded a carbon-fixing enzyme vital to photosynthesis in a tobacco plant with two enzymes from cyanobacteria, which function at a faster rate. If photosynthesis can be performed more efficiently, plants would grow larger and crops could have higher yields, possibly as high as 60% according to computer models.

“This is the first time that a plant has been created through genetic engineering to fix all of its carbon by a cyanobacterial enzyme,” said Cornell Professor Maureen Hanson, a co-author of the study, in the release. She added, “It is an important first step in creating plants with more efficient photosynthesis.”

Read more

The Exponential Nature of Ebola

Otto E. Rossler

Institute for Physical and Theoretical Chemistry, University of Tubingen, Auf der Morgenstelle 8, 72076 Tubingen, Germany

Inscribed on the UN Building:
Human beings are members of a whole,
In creation of one essence and soul;
If one member is afflicted with pain,
Other members uneasy will remain;
If you have no sympathy for human pain,
The name of human you cannot retain.
(Saadi, 1210–1292)

Abstract

A survey of the epidemiology of Ebola and the logically necessary responses is offered.

(October 23, 2014)

Ebola is of interest to mathematicians, of all things. Medical epidemiology is basically a mathematical discipline. The exponential growth curve of the number of victims – published on en.wikipedia
(http://en.wikipedia.org/wiki/Ebola_virus_epidemic_in_West_Af…_plot..png ) – exhibits a visible doubling every three weeks over six months time by now, with an incredible inexorability of the mathematical trend displayed. It represents an unprecedented medical record. It shows that the amazingly constant 3 weeks long incubation period, with subsequent likely death (50 percent) and with on average two newly infected persons, is something like a law of nature. It is a “phenomenon” in the sense of the
exact sciences.

The perfection in which this behavior is observable in an ordinary if poor population is unprecedented. The contagiousness of the disease is extraordinary. And because of the 3 weeks long latency in the mom-infectious incubation period, the upcoming fate is hidden from the infected persons. They are healthy and nothing prevents them from leading a normal life. On the last two days before becoming bed-ridden on the 21st day, say, they carry the disease further.
When they are not at home – in town, say, or at their work place – they propagate the disease, and they do so at home thereafter as long as being cared for. Such a disease – once it has surpassed
an initial threshold of a minimum number of cases – is pre-programmed to spread and conquer.

Preventive immunization is hoped to be available, on an at first small and then grander scale, after a time gap of several months. It would be great if the race could be won earlier. This would stop the spreading if most everyone gets the protective shot. A curative – or at least preventive-acting – serum is also in preparation. And plasma can be collected from survivors who must be paid for this. (See the splendid review talk hiven most recently by the discoverer and name-giver of Ebola,Peter Piot: http://www.oxfordmartin.ox.ac.uk/videos/view/415 ). But these measures can help stop the spreading only after long further months have passed. After a 4-months delay, for
example (or roughly 18 weeks), the disease will – if no other measures are taken – have passed through six doubling periods of three weeks and hence have killed 64 times the current number of
about 5.000, which means about 300.000. And if the grand-scale vaccination or therapy takes twice as long in coming (8 months), it is 64 times more casualties again or 20 million deaths. If the
delay is 12 months (one year), it is again 64 times that number or one billion.

Therefore, relying on therapy or vaccination is like relying on a straw right now. What is it that can be done in the meantime? Flying-in nurses and doctors? No: Locomotion control is the only other causal measure that can be taken. It will not reduce the ongoing course of the infection in the sealed-off areas but it will, after reducing the population there to about one half in the worst case, stop the disease. This is a very sad prospect.

However, this prospect is too optimistic still. For it presupposes that the closed-off areas are provided with water and food as “catastrophe zones.” At the time being, this is perhaps still
feasible. But it will soon exhaust planet-wide capacities. This is a war going on. A war that is waged for once not by reluctant human beings but by a soulless parasite.

Obviously, it is not volunteering doctors and nurses that are needed as a causal measure, but water and food supply chains in motorized units, sure to reach even the remotest areas of the declared “closed zones.”

The “epidemiological approach” just sketched looks rather soulless: Is really the provision of basic needs more important than treatment? It indeed is much more causal – sadly. It is tragic to
see that neglecting this support strategy is much more deadly than the withdrawal of all therapeutic volunteers could be since they are “a drop on a hot stone” by comparison.

But is this not terrible? It is tragic. It is even more tragic since the disease itself is so uniquely cruel. It demands that healthy persons keep away from victims unless provided with an expensive protective gear (or unless being survivors). Therefore, the latter gear needs to be provided in very large numbers soon to be distributed in the closed-off zones immediately to prevent the death rate inside from becoming maximal.

A caretaker with a feeling heart coined the word “dying twice” for Ebola. The first time because you get abandoned – no one can come close to you, touch you, serve you. You are made a leper. Your mother must not hug you or come close any more (remember, even the dying Jesus had his mother at his side). Then you die once more in agony.

We come to a conclusion. Should the rational medical information given above be made public? The answer is: of course. But is this not another catastrophic news about Ebola? It surely is. This is the
first time in history that a war against nature needs to be waged. The greatest heroes are the vaccination developers. The next guild is the drug developers. The third league is the first league in terms of importance: The administrators who close down whole areas to be no longer left by anyone living there. On the same level are the providers of water and food for the closed-down areas. Their
mission is preventing death on a mega-scale. Until the eventually millions of sera and immunization kits needed are available, the twice weekly water and food squadrons are the life-saving troup.
They have the most important job as the green angels.

Volunteers are needed for this large-scale operation. And nations are needed to send-in the needed subsistence supplies soon, subito, immediately. For every three weeks’ delay causes a doubling in the
size of the effort needed, or perhaps even a quadrupling since the area to be served quadruples. For the infected areas cannot be closed before the support system is in place! These volunteers are
the life-saving angels – not the doctors, not the nurses. The latter are needed, too, but their humanitarian activities are in vain without the causal hygiene measure of closed areas supported
from the outside.

A new type of volunteer – the water-and-food squad – needs to be founded immediately. Any objections from my readers? Does anyone see a glimmer of hope beyond the above proposed desperate measures?

Acknowledgments

I thank Klaus Dietz for a discussion. For J.O.R.

Gaia Vince — BBC Future

(Nasa)

In Ancient Greek mythology, the Earth Goddess Gaia had nine titan sons, who attempted to control not just the Earth, but the entire Universe. I’d like to introduce another. It’s a new creature who emerged only in recent decades. But it’s a creature who is already as influential over life on the planet as the phytoplankton or forests that regulate global temperature, the weather and the air we breathe.

That new creature is us, or more precisely, what humanity is becoming. The entirety of our species, Homo sapiens, is evolving into a superorganism; I’ll call this new life force Homo omnis, or ‘Homni’.

Read more

Elizabeth Gibney — Nature

Physicists have found hints that the asymmetry of life — the fact that most biochemical molecules are ‘left-handed’ or ‘right-handed’ — could have been caused by electrons from nuclear decay in the early days of evolution. In an experiment that took 13 years to perfect1, the researchers have found that these electrons tend to destroy certain organic molecules slightly more often than they destroy their mirror images.

Many organic molecules, including glucose and most biological amino acids, are ‘chiral’. This means that they are different than their mirror-image molecules, just like a left and a right glove are. Moreover, in such cases life tends to consistently use one of the possible versions — for example, the DNA double helix in its standard form always twists like a right-handed screw. But the reason for this preference has long remained a mystery.

Read more

Western Canada’s most futurist-oriented longevity organization, the Lifespan Society of British Columbia, has organized a first-class life extension conference, which will take place later this fall in the heart of downtown Vancouver. The Longevity and Genetics Conference 2014 offers a full-day of expert presentations, made accessible to a general audience, with keynote on the latest developments in biorejuvination by Aubrey de Grey of SENS Research Foundation. The conference will be interactive, with a panel session for audience questions, and VIP options for further interaction with speakers.

ImageofAubreydeGrey
Aubrey de Grey

Who will be there? In addition to Aubrey de Grey, there are four other speakers confirmed thus far: Dr. Angela Brooks-Wilson, Head of Cancer Genetics at the Michael Smith Genome Sciences Centre at the BC Cancer Agency, Dr. S. Jay Olshansky, Board of Directors of the American Federation of Aging Research, and co-author of The Quest for Immortality: Science at the Frontiers of Aging, Dr. Clinton Mielke, former Mayo Clinic researcher and founder of the quantified self platform “infino.me”, and lastly, one of futurism’s most experienced and dedicated radical longevity advocates, Benjamin Best, who is currently Director of Research Oversight at the Life Extension Foundation. This conference is a multi-disciplinary event, engaging several points of interest and relevance in the longevity space, from the cellular, genetic science of aging, to the latest epidemiological and even demographic research. You can also expect discussion on personalized medicine and quantified self technologies, as well as big picture, sociological and philosophical, longevity-specific topics.

All around, the 2014 Longevity and Genetics conference, set to take place Saturday November 15, has a lot to offer, as does the host city of Vancouver. A recent study has indicated that a majority of Canadians, 59%, are in favor of life extension technology, with 47% expecting that science and technology will enable living until 120 by 2050. The Lifespan Society of British Columbia is keeping that momentum and enthusiasm alive and growing, and I’m glad they have organized such a high-calliber event. Tickets are currently still available. Learn more about the event and purchase tickets here.

ImageofVancouver
Vancouver B.C.

What follows is my position piece for London’s FutureFest 2013, the website for which no longer exists.

Medicine is a very ancient practice. In fact, it is so ancient that it may have become obsolete. Medicine aims to restore the mind and body to their natural state relative to an individual’s stage in the life cycle. The idea has been to live as well as possible but also die well when the time came. The sense of what is ‘natural’ was tied to statistically normal ways of living in particular cultures. Past conceptions of health dictated future medical practice. In this respect, medical practitioners may have been wise but they certainly were not progressive.

However, this began to change in the mid-19th century when the great medical experimenter, Claude Bernard, began to champion the idea that medicine should be about the indefinite delaying, if not outright overcoming, of death. Bernard saw organisms as perpetual motion machines in an endless struggle to bring order to an environment that always threatens to consume them. That ‘order’ consists in sustaining the conditions needed to maintain an organism’s indefinite existence. Toward this end, Bernard enthusiastically used animals as living laboratories for testing his various hypotheses.

Historians identify Bernard’s sensibility with the advent of ‘modern medicine’, an increasingly high-tech and aspirational enterprise, dedicated to extending the full panoply of human capacities indefinitely. On this view, scientific training trumps practitioner experience, radically invasive and reconstructive procedures become the norm, and death on a physician’s watch is taken to be the ultimate failure. Humanity 2.0 takes this way of thinking to the next level, which involves the abolition of medicine itself. But what exactly would that mean – and what would replace it?

The short answer is bioengineering, the leading edge of which is ‘synthetic biology’. The molecular revolution in the life sciences, which began in earnest with the discovery of DNA’s function in 1953, came about when scientists trained in physics and chemistry entered biology. What is sometimes called ‘genomic medicine’ now promises to bring an engineer’s eye to improving the human condition without presuming any limits to what might count as optimal performance. In that case, ‘standards’ do not refer to some natural norm of health, but to features of an organism’s design that enable its parts to be ‘interoperable’ in service of its life processes.

In this brave new ‘post-medical’ world, there is always room for improvement and, in that sense, everyone may be seen as ‘underperforming’ if not outright disabled. The prospect suggests a series of questions for both the individual and society: (1) Which dimensions of the human condition are worth extending – and how far should we go? (2) Can we afford to allow everyone a free choice in the matter, given the likely skew of the risky decisions that people might take? (3) How shall these improvements be implemented? While bioengineering is popularly associated with nano-interventions inside the body, of course similarly targeted interventions can be made outside the body, or indeed many bodies, to produce ‘smart habitats’ that channel and reinforce desirable emergent traits and behaviours that may even leave long-term genetic traces.

However these questions are answered, it is clear that people will be encouraged, if not legally required, to learn more about how their minds and bodies work. At the same time, there will no longer be any pressure to place one’s fate in the hands of a physician, who instead will function as a paid consultant on a need-to-know and take-it-or-leave-it basis. People will take greater responsibility for the regular maintenance and upgrading of their minds and bodies – and society will learn to tolerate the diversity of human conditions that will result from this newfound sense of autonomy.

Among transhumanists, Nick Bostrom is well-known for promoting the idea of ‘existential risks’, potential harms which, were they come to pass, would annihilate the human condition altogether. Their probability may be relatively small, but the expected magnitude of their effects are so great, so Bostrom claims, that it is rational to devote some significant resources to safeguarding against them. (Indeed, there are now institutes for the study of existential risks on both sides of the Atlantic.) Moreover, because existential risks are intimately tied to the advancement of science and technology, their probability is likely to grow in the coming years.

Contrary to expectations, Bostrom is much less concerned with ecological suicide from humanity’s excessive carbon emissions than with the emergence of a superior brand of artificial intelligence – a ‘superintelligence’. This creature would be a human artefact, or at least descended from one. However, its self-programming capacity would have run amok in positive feedback, resulting in a maniacal, even self-destructive mission to rearrange the world in the image of its objectives. Such a superintelligence may appear to be quite ruthless in its dealings with humans, but that would only reflect the obstacles that we place, perhaps unwittingly, in the way of the realization of its objectives. Thus, this being would not conform to the science fiction stereotype of robots deliberately revolting against creators who are now seen as their inferiors.

I must confess that I find this conceptualisation of ‘existential risk’ rather un-transhumanist in spirit. Bostrom treats risk as a threat rather than as an opportunity. His risk horizon is precautionary rather than proactionary: He focuses on preventing the worst consequences rather than considering the prospects that are opened up by whatever radical changes might be inflicted by the superintelligence. This may be because in Bostrom’s key thought experiment, the superintelligence turns out to be the ultimate paper-clip collecting machine that ends up subsuming the entire planet to its task, destroying humanity along the way, almost as an afterthought.

But is this really a good starting point for thinking about existential risk? Much more likely than total human annihilation is that a substantial portion of humanity – but not everyone – is eliminated. (Certainly this captures the worst case scenarios surrounding climate change.) The Cold War remains the gold standard for this line of thought. In the US, the RAND Corporation’s chief analyst, Herman Kahn — the model for Stanley Kubrick’s Dr Strangelove – routinely, if not casually, tossed off scenarios of how, say, a US-USSR nuclear confrontation would serve to increase the tolerance for human biological diversity, due to the resulting proliferation of genetic mutations. Put in more general terms, a severe social disruption provides a unique opportunity for pursuing ideals that might otherwise be thwarted by a ‘business as usual’ policy orientation.

Here it is worth recalling that the Cold War succeeded on its own terms: None of the worst case scenarios were ever realized, even though many people were mentally prepared to make the most of the projected adversities. This is one way to think about how the internet itself arose, courtesy the US Defense Department’s interest in maintaining scientific communications in the face of attack. In other words, rather than trying to prevent every possible catastrophe, the way to deal with ‘unknown unknowns’ is to imagine that some of them have already come to pass and redesign the world accordingly so that you can carry on regardless. Thus, Herman Kahn’s projection of a thermonuclear future provided grounds in the 1960s for the promotion of, say, racially mixed marriages, disability-friendly environments, and the ‘do more with less’ mentality that came to characterize the ecology movement.

Kahn was a true proactionary thinker. For him, the threat of global nuclear war raised Joseph Schumpeter’s idea of ‘creative destruction’ to a higher plane, inspiring social innovations that would be otherwise difficult to achieve by conventional politics. Historians have long noted that modern warfare has promoted spikes in innovation that in times of peace are then subject to diffusion, as the relevant industries redeploy for civilian purposes. We might think of this tendency, in mechanical terms, as system ‘overdesign’ (i.e. preparing for the worst but benefitting even if the worst doesn’t happen) or, more organically, as a vaccine that converts a potential liability into an actual benefit.

In either case, existential risk is regarded in broadly positive terms, specifically as an unprecedented opportunity to extend the range of human capability, even under radically changed circumstances. This sense of ‘antifragility’, as the great ‘black swan’ detector Nicholas Taleb would put it, is the hallmark of our ‘risk intelligence’, the phrase that the British philosopher Dylan Evans has coined for a demonstrated capacity that people have to make step change improvements in their lives in the face of radical uncertainty. From this standpoint, Bostrom’s superintelligence concept severely underestimates the adaptive capacity of human intelligence.

Perhaps the best way to see just how much Bostrom shortchanges humanity is to note that his crucial thought experiment requires a strong ontological distinction between humans and superintelligent artefacts. Where are the cyborgs in this doomsday scenario? Reading Bostrom reminds me that science fiction did indeed make progress in the twentieth century, from the world of Karl Čapek’s Rossum’s Universal Robots in 1920 to the much subtler blending of human and computer futures in the works of William Gibson and others in more recent times.

Bostrom’s superintelligence scenario began to be handled in more sophisticated fashion after the end of the First World War, popularly under the guise of ‘runaway technology’, a topic that received its canonical formulation in Langdon Winner’s 1977 Autonomous Technology: Technics out of Control, a classic in the field of science and technology of studies. Back then the main problem with superintelligent machines was that they would ‘dehumanize’ us, less because they might dominate us but more because we might become like them – perhaps because we feel that we have invested our best qualities in them, very much like Ludwig Feuerbach’s aetiology of the Judaeo-Christian God. Marxists gave the term ‘alienation’ a popular spin to capture this sentiment in the 1960s.

Nowadays, of course, matters have been complicated by the prospect of human and machine identities merging together. This goes beyond simply implanting silicon chips in one’s brain. Rather, it involves the complex migration and enhancement of human selves in cyberspace. (Sherry Turkle has been the premier ethnographer of this process in children.) That such developments are even possible points to a prospect that Bostrom refuses to consider, namely, that to be ‘human’ is to be only contingently located in the body of Homo sapiens. The name of our species – Homo sapiens – already gives away the game, because our distinguishing feature (so claimed Linnaeus) had nothing to do with our physical morphology but with the character of our minds. And might not such a ‘sapient’ mind better exist somewhere other than in the upright ape from which we have descended?

The prospects for transhumanism hang on the answer to this question. Aubrey de Grey’s indefinite life extension project is about Homo sapiens in its normal biological form. In contrast, Ray Kurzweil’s ‘singularity’ talk of uploading our consciousness into indefinitely powerful computers suggests a complete abandonment of the ordinary human body. The lesson taught by Langdon Winner’s historical account is that our primary existential risk does not come from alien annihilation but from what social psychologists call ‘adaptive preference formation’. In other words, we come to want the sort of world that we think is most likely, simply because that offers us the greatest sense of security. Thus, the history of technology is full of cases in which humans have radically changed their lives to adjust to an innovation whose benefits they reckon outweigh the costs, even when both remain fundamentally incalculable. Success in the face such ‘existential risk’ is then largely a matter of whether people – perhaps of the following generation – have made the value shifts necessary to see the changes as positive overall. But of course, it does not follow that those who fail to survive the transition or have acquired their values before this transition would draw a similar conclusion.

If the controversy over genetically modified organisms (GMOs) tells us something indisputable, it is this: GMO food products from corporations like Monsanto are suspected to endanger health. On the other hand, an individual’s right to genetically modify and even synthesize entire organisms as part of his dietary or medical regimen could someday be a human right.
The suspicion that agri-giant companies do harm by designing crops is legitimate, even if evidence of harmful GMOs is scant to absent. Based on their own priorities and actions, we should have no doubt that self-interested corporations disregard the rights and wellbeing of local producers and consumers. This makes agri-giants producing GMOs harmful and untrustworthy, regardless of whether individual GMO products are actually harmful.
Corporate interference in government of the sort opposed by the Occupy Movement is also connected with the GMO controversy, as the US government is accused of going to great lengths to protect “stakeholders” like Monsanto via the law. This makes the GMO controversy more of a business and political issue rather than a scientific one, as I argued in an essay published at the Institute for Ethics and Emerging Technologies (IEET). Attacks on science and scientists themselves over the GMO controversy are not justified, as the problem lies solely with a tiny handful of businessmen and corrupt politicians.
An emerging area that threatens to become as controversial as GMOs, if the American corporate stranglehold on innovation is allowed to shape its future, is synthetic biology. In his 2014 book, Life at the Speed of Light: From the Double Helix to the Dawn of Digital Life, top synthetic biologist J. Craig Venter offers powerful words supporting a future shaped by ubiquitous synthetic biology in our lives:

“I can imagine designing simple animal forms that provide novel sources of nutrients and pharmaceuticals, customizing human stem cells to regenerate a damaged, old, or sick body. There will also be new ways to enhance the human body as well, such as boosting intelligence, adapting it to new environments such as radiation levels encountered in space, rejuvenating worn-out muscles, and so on”

In his own words, Venter’s vision is no less than “a new phase of evolution” for humanity. It offers what Venter calls the “real prize”: a family of designer bacteria “tailored to deal with pollution or to absorb excess carbon dioxide or even meet future fuel needs”. Greater than this, the existing tools of synthetic biology are transhumanist in nature because they create limitless means for humans to enhance themselves to deal with harsher environments and extend their lifespans.
While there should be little public harm in the eventual ubiquity of the technologies and information required to construct synthetic life, the problems of corporate oligopoly and political lobbying are threatening synthetic biology’s future as much as they threaten other facets of human progress. The best chance for an outcome that will be maximally beneficial for the world relies on synthetic biology taking a radically different direction to GM. That alternative direction, of course, is an open source future for synthetic biology, as called for by Canadian futurist Andrew Hessel and others.
Calling himself a “catalyst for open-source synthetic biology”, Hessel is one of the growing number of experts who reject biotechnology’s excessive use of patents. Nature notes that his Pink Army Cooperative venture relies instead on “freely available software and biological parts that could be combined in innovative ways to create individualized cancer treatments — without the need for massive upfront investments or a thicket of protective patents”.
While offering some support to the necessity of patents, J. Craig Venter more importantly praises the annual International Genetically Engineered Machine (iGEM) competition in his book as a means of encouraging innovation. He specifically names the Registry of Standard Biological Parts, an open source library from which to obtain BioBricks, and describes this as instrumental for synthetic biology innovation. Likened to bricks of Lego that can be snapped together with ease by the builder, BioBricks are prepared standard pieces of genetic code, with which living cells can be newly equipped and operated as microscopic chemical factories. This has enabled students and small companies to reprogram life itself, taking part in new discoveries and innovations that would have otherwise been impossible without the direct supervision of the world’s best-trained teams of biologists.
There is a similar movement towards popular synthetic biology by the name of biohacking, promoted by such experts as Ellen Jorgensen. This compellingly matches the calls for greater autonomy for individuals and small companies in medicine and human enhancement. Unfortunately, despite their potential to greatly empower consumers and farmers, such developments have not yet found resonance with anti-GMO campaigners, whose outright rejection of biotechnology has been described as anti-science and “bio-luddite” by techno-progressives. It is for this reason that emphasizing the excellent potential of biotechnology for feeding and fuelling a world plagued by dwindling resources is important, and a focus on the ills of big business rather than imagined spectres emerging from science itself is vital.
The concerns of anti-GMO activists would be addressed better by offering support to an alternative in the form of “do-it-yourself” biotechnology, rather than rejecting sciences and industries that are already destined to be a fundamental part of humanity’s future. What needs to be made is a case for popular technology, in hope that we can reject the portrayal of all advanced technology as an ally of powerful states and corporations and instead unlock its future as a means of liberation from global exploitation and scarcity.
While there are strong arguments that current leading biotechnology companies feel more secure and perform better when they retain rigidly enforced intellectual property rights, Andrew Hessel rightly points out that the open source future is less about economic facts and figures than about culture. The truth is that there is a massive cultural transition taking place. We can see a growing hostility to patents, and an increasing popular enthusiasm for open source innovation, most promisingly among today’s internet-borne youth.
In describing a cultural transition, Hessel is acknowledging the importance of the emerging body of transnational youth whose only ideology is the claim that information wants to be free, and we find the same culture reflected in the values of organizations like WikiLeaks. Affecting every facet of science and technology, the elite of today’s youth are crying out for a more open, democratic, transparent and consumer-led future at every level.

By Harry J. Bentham - More articles by Harry J. Bentham

Originally published at h+ Magazine on 21 August 2014

. @IEET. @HJBentham. @ClubOfINFO. #nature. #philosophy. #ebook.

There is often imagined to be a struggle between humans and nature. How does this struggle originate, and what is its resolution? Such a question is central to some religious traditions, and has much room to be explored in literature.
Nature is used to describe everything that lies outside of human agency. Disasters and disease often fall under this description, although there is usually some element of human blame in such problems. Some people try to live or eat according to preferences that they call “natural”. In my view, this is a fallacy. When we use the word natural with its only workable definition, to represent something distinct from human agency, it means that anything resulting from human agency is unnatural and so it cannot be natural (even if it imitates nature). When it applies to human choices, natural is only an arbitrary label used by people to refer to anything they approve of.
Why would humans battle against nature? Perhaps suffering can be described as the most imposing and constantly surfacing part of nature in our lives, because it is ultimately caused by the laws of biology rather than human wills. We humans have vulnerable bodies and we rely on vulnerable, easily destroyed brains to exist, although it is very apparent that we would prefer not to be exposed in this way. Because this is so, the struggle to overcome humanity’s physical and medical vulnerabilities can be depicted as a battle against natureour nature.
The assertion that seeking invulnerability against suffering is an escape from cruel inevitabilities biology is certainly reflected in some philosophers, such as Friedrich Nietzsche. Despite seeing the transformation of humanity into a higher creature as a noble task, Nietzsche saw this as necessarily involving suffering. As for the desire to end suffering, he deplored this as a product of weakness and the inability to accept the forces outside human control.
Nietzsche addressed the way in which religious traditions give moral assurances against suffering. Religions offer promises of justice that run contrary to the natural order in which the strong are favored over the weak. The Christian doctrines of the fall of man and eternal Heaven are alike in their view that the world we know is flawed and polluted, and humans are instead meant to endure in paradise. Such myths have been easy for people to buy into, because it is often easier to tolerate suffering in the world and move on if one believes in a supernatural alternativea cosmic safety net for the weak and the deadafter it.
The other manifestation of our weak human refusal to accept suffering, but which actually works, is the desire to use science and technology to thwart suffering. Once we remove the supernatural, the only remaining assurances against suffering can necessarily come from the modernity of technology. In this sense, the idea of a technological singularity, after which the very best technology permitted by the laws of physics will get within reach, represents the only “true” paradise that could ever be inherited.
But what if a paradise, an all-encompassing solution to suffering, is impossible? A universe with high suffering is inherently more likely than a universe without it, because the “anthropic principle” does not contain any guarantees against mortality and suffering. The anthropic principle says human life exists only because this is a requisite for us to notice our own existence. Therefore, the anthropic principle leads to a universe that merely tolerates conscious life for a limited time, rather than enriches it or sustains it. Contrary to religious claims, the universe in which we reside is not “designed” for us to inhabit, and we know this because it is mostly uninhabitable. The vacuum of space cannot be inhabited, and most locations in the universe have the wrong temperature or lack the elements needed for life to exist. What is conspicuous is that the universal constants allow us to exist, not in any kind of ideal state but just enough.
One can relate “extropy” (Kevin Kelly’s usage of the term) to the anthropic principle. Where the anthropic principle explains the human-friendly properties of the universe as existing simply because a human observer exists, extropy the guarantee of something even more complex and intelligent in the future. More than simply tolerating human life, then, a universe where humans exist includes the inevitability that human intelligence will evolve into or produce something far more enduring and glorious. After all, we are no pinnacle, and we are still witnessing an ongoing explosion of intelligence through such creations as the internet and the race to develop powerful AI.
Take a look at history and current cosmology, and we will see that extropy looks very valid. Humans have undeniably been improving their existence, and this is arguably due to the universe being filled with resources that are very friendly to our needs. There are seemingly infinite resources and tools in the universe for humans to exploit to improve their civilization, and the anthropic principle alone did not necessary contain any guarantee that such useful “equipment” would exist. Conceivably, there could be worlds where intelligent life exists but there can be no fire. There might also have been no sufficient quantities of ores or effective tools to build an advanced civilization. Certainly, humans have a lot more at their fingertips than the minimal equipment promised to them by the anthropic principle. Although there is not necessarily a God to thank for it, there is a lot to be thankful for.
What if there was a world where conditions were less favorable? Perhaps, if humans were too vulnerable, there would be less potential to develop civilization, and instead all thought would be dedicated to staying alive. A work of fiction I have dedicated to exploring this theme, The Traveller and Pandemonium, takes place in a more hostile universe than ours (as permitted in the “many-worlds hypothesis”), where a traveler is not convinced by the idea that humanity could have arisen in such unfavorable conditions. Determining that humanity belongs in another world, he searches vainly for the solution.
The traveler keeps his quest secret, aware that most people will condemn him as a religious nut searching for Heaven if he talks about it, but there is actually a rational basis for his view that humans belong elsewhere. The world in which he resides is genuinely toxic and inhospitable to humanity, humans are vulnerable to every creature in the world around them, and they are rapidly going extinct. It looks like a human colonization gone awry on a hostile alien world, although no-one knows how it got that way.
The two strategies against suffering in the world can be described as surgical and spiritual. Those who advocate “spiritual” solutions are only offering window-dressing to humanity while they greedily seek power. Those who advocate “surgical” solutions might not seem beautiful or perfect in what they promise, but they are the only ones promising something real, offering something tangible that could really fight away the uglier characteristics of the universe and save what can be saved.

By Harry J. Bentham - More articles by Harry J. Bentham

Originally published at the Institute for Ethics and Emerging Technologies on 17 July 2014