БЛОГ

Archive for the ‘biological’ category: Page 88

Sep 5, 2022

Time: Do the past, present, and future exist all at once?

Posted by in categories: biological, neuroscience, physics

Everything we do as living organisms is dependent, in some capacity, on time. The concept is so complex that scientists still argue whether it exists or if it is an illusion.

In this video, astrophysicist Michelle Thaller, science educator Bill Nye, author James Gleick, and neuroscientist Dean Buonomano discuss how the human brain perceives of the passage of time, the idea in theoretical physics of time as a fourth dimension, and the theory that space and time are interwoven.

Thaller illustrates Einstein’s theory of relativity, Buonomano outlines eternalism, and all the experts touch on issues of perception, definition, and experience.

Sep 5, 2022

The World in 2200: Top 10 Future Technologies

Posted by in categories: biological, mathematics, physics, Ray Kurzweil, robotics/AI, singularity

This video covers the world in 2,200 and its future technologies. Watch this next video about the world in 2300: https://bit.ly/3CMVJYY.
► Support This Channel: https://www.patreon.com/futurebusinesstech.
► Udacity: Up To 75% Off All Courses (Biggest Discount Ever): https://bit.ly/3j9pIRZ
► Brilliant: Learn Science And Math Interactively (20% Off): https://bit.ly/3HAznLL
► Jasper AI: Write 5x Faster With Artificial Intelligence: https://bit.ly/3MIPSYp.

SOURCES:
https://www.futuretimeline.net.
• The Future of Humanity (Michio Kaku): https://amzn.to/3Gz8ffA
• The Singularity Is Near: When Humans Transcend Biology (Ray Kurzweil): https://amzn.to/3ftOhXI
• Physics of the Future (Michio Kaku): https://amzn.to/33NP7f7
https://www.realclearscience.com/blog/2020/10/29/3_ways_to_m…ethod.html.

Continue reading “The World in 2200: Top 10 Future Technologies” »

Sep 5, 2022

The World in a Million Years: Top 7 Future Technologies

Posted by in categories: biological, mathematics, physics, Ray Kurzweil, robotics/AI, singularity

This video covers the world in a million years and its future technologies. Watch this next video about the world in 10,000 A.D.: bit.ly/373KvDr.
► Support This Channel: https://www.patreon.com/futurebusinesstech.
► Udacity: Up To 75% Off All Courses (Biggest Discount Ever): https://bit.ly/3j9pIRZ
► Brilliant: Learn Science And Math Interactively (20% Off): https://bit.ly/3HAznLL
► Jasper AI: Write 5x Faster With Artificial Intelligence: https://bit.ly/3MIPSYp.

SOURCES:
https://www.futuretimeline.net.
• The Future of Humanity (Michio Kaku): https://amzn.to/3Gz8ffA
• The Singularity Is Near: When Humans Transcend Biology (Ray Kurzweil): https://amzn.to/3ftOhXI
• Physics of the Future (Michio Kaku): https://amzn.to/33NP7f7

Continue reading “The World in a Million Years: Top 7 Future Technologies” »

Sep 5, 2022

The World in 10,000 A.D.: Top 7 Future Technologies

Posted by in categories: biological, mathematics, physics, Ray Kurzweil, robotics/AI, singularity

This video covers the world in 10,000 A.D. and its future technologies. Watch this next video about the world in a million years: https://bit.ly/3xe50by.
► Support This Channel: https://www.patreon.com/futurebusinesstech.
► Udacity: Up To 75% Off All Courses (Biggest Discount Ever): https://bit.ly/3j9pIRZ
► Brilliant: Learn Science And Math Interactively (20% Off): https://bit.ly/3HAznLL
► Jasper AI: Write 5x Faster With Artificial Intelligence: https://bit.ly/3MIPSYp.

SOURCES:
https://www.futuretimeline.net.
• The Future of Humanity (Michio Kaku): https://amzn.to/3Gz8ffA
• The Singularity Is Near: When Humans Transcend Biology (Ray Kurzweil): https://amzn.to/3ftOhXI
• Physics of the Future (Michio Kaku): https://amzn.to/33NP7f7

Continue reading “The World in 10,000 A.D.: Top 7 Future Technologies” »

Sep 3, 2022

Chaotic circuit exhibits unprecedented equilibrium properties

Posted by in categories: biological, chemistry, economics, internet, mathematics, robotics/AI

Mathematical derivations have unveiled a chaotic, memristor-based circuit in which different oscillating phases can co-exist along six possible lines.

Unlike ordinary electronic circuits, chaotic circuits can produce oscillating that never repeat over time—but nonetheless, display underlying mathematical patterns. To expand the potential applications of these circuits, previous studies have designed systems in which multiple oscillating phases can co-exist along mathematically-defined “lines of .” In new research published in The European Physical Journal Special Topics, a team led by Janarthanan Ramadoss at the Chennai Institute of Technology, India, designed a chaotic circuit with six distinct lines of equilibrium—more than have ever been demonstrated previously.

Chaotic systems are now widely studied across a broad range of fields: from biology and chemistry, to engineering and economics. If the team’s circuit is realized experimentally, it could provide researchers with unprecedented opportunities to study these systems experimentally. More practically, their design could be used for applications including robotic motion control, secure password generation, and new developments in the Internet of Things—through which networks of everyday objects can gather and share data.

Sep 3, 2022

3D-printed, laser-cooked meat may be the future of cooking

Posted by in categories: 3D printing, biological, robotics/AI

A future kitchen appliance could make it possible to 3D-print entirely new recipes and cook them with lasers.

That is the long-term vision at Columbia University’s Creative Machines Lab, an engineering group that uses insight from biology to research and develop autonomous systems that “create and are creative.” The engineers have spent years working to digitize and automate the cooking process.

Continue reading “3D-printed, laser-cooked meat may be the future of cooking” »

Sep 1, 2022

Research Team Reveals A ‘Blueprint’ for Photosynthesis

Posted by in category: biological

This story is adapted from a news release from Michigan State University-By Matt Davenport Researchers at Michigan State University (MSU), UC Berkeley, the University of Southern Bohemia, and Lawrence Berkeley National Laboratory (Berkeley Lab) have helped reveal the most detailed picture to date of important biological “antennae.” Nature has evolved these structures to harness the sun’s energy through photosynthesis, but these sunlight receivers don’t belong to plants. They’re found in microbes known as cyanobacteria, the evolutionary descendants of the first organisms on Earth capable of taking sunlight, water, and carbon dioxide and turning them into sugars and oxygen. Published.

Aug 31, 2022

Study finds tiny brain area controls work for rewards

Posted by in categories: biological, neuroscience

A tiny but important area in the middle of the brain acts as a switch that determines when an animal is willing to work for a reward and when it stops working, according to a study published Aug. 31 in the journal Current Biology.

“The study changes how we think about this particular region,” said senior author Melissa Warden, assistant professor and Miriam M. Salpeter Fellow in the Department of Neurobiology and Behavior, which is shared between the College of Arts and Sciences and the College of Agriculture and Life Sciences.

“It has implications for psychiatric disorders, particularly depression and anxiety,” Warden said.

Aug 31, 2022

Making Computer Chips Act More like Brain Cells

Posted by in categories: biological, chemistry, neuroscience, supercomputing

The human brain is an amazing computing machine. Weighing only three pounds or so, it can process information a thousand times faster than the fastest supercomputer, store a thousand times more information than a powerful laptop, and do it all using no more energy than a 20-watt lightbulb.

Researchers are trying to replicate this success using soft, flexible organic materials that can operate like biological neurons and someday might even be able to interconnect with them. Eventually, soft “neuromorphic” computer chips could be implanted directly into the brain, allowing people to control an artificial arm or a computer monitor simply by thinking about it.

Like real neurons — but unlike conventional computer chips — these new devices can send and receive both chemical and electrical signals. “Your brain works with chemicals, with neurotransmitters like dopamine and serotonin. Our materials are able to interact electrochemically with them,” says Alberto Salleo, a materials scientist at Stanford University who wrote about the potential for organic neuromorphic devices in the 2021 Annual Review of Materials Research.

Aug 31, 2022

Challenges of Particular Interest to Me

Posted by in categories: bioengineering, biological

As a scientist, I am driven by the power of technological breakthroughs to make positive change for humanity. While I also take immense pleasure in the artistic/creative aspects of technology design, my motivation is centered on helping people and on protecting the future of the human species. For this reason, I am interested in a wide array of contemporary challenges as described in this outline. Because I am a synthetic biologist and synthetic biology has many applications, I have the ability to explore solutions to such diverse challenges despite their highly multidisciplinary nature.

That said, one of the tools in any good researcher’s repertoire is collaboration. Since I am just one person, my knowledge can only go so deep in so many areas. Interdisciplinary projects are much more likely to succeed when experts from multiple areas work together. So, I leverage collaboration extensively when carrying out my projects and will continue to do so in the future.

It should be noted that, though I am publicly presenting a number of conceptual explanations of possible solutions to important problems via this list, I have deliberately stated them in somewhat vague language to prevent their public disclosure from precluding outside investment.

Page 88 of 223First8586878889909192Last