Toggle light / dark theme

Eli Mohamad & Kai Micah Mills — Advancing Frontiers Of Cryopreservation & Biological Replacement

Biological replacement and cryopreservation to significantly extend human lifespans — eli mohamad & kai micah mills — hydradao and cryodao.


Eli Mohamad is a prominent figure in the biotech, space, and AI industries who has co-founded several successful startups and has a real passion for groundbreaking ventures that focus on the development of futuristic technologies.

Currently as a Core Team Member at CryoDAO (https://www.cryodao.org/), a decentralized organization focused on sourcing and funding research in cryopreservation, Eli continues to work at the forefront of innovative technologies and applies his extensive experience in biotechnology and innovative projects to advance novel cryopreservation technologies and their various applications, from critical tissue and organ preservation, to cryo-sleep and suspended animation for space exploration.

Eli has also been involved in setting up another decentralized organization called HydraDAO (https://hydradao.org/) which is focused on funding and incubating biological replacement research to significantly extend human lifespan and will be looking at everything from Limb Regeneration, Organ Bioprinting and Xenotransplantation, to Progressive Brain Replacement, head/brain transplants, and even whole body replacement via non sentient cloning.

Throughout his career, Eli has held various leadership positions in cutting-edge companies including as Co-founder and Chief Business Officer at X-Therma Inc., a company focused on complex tissue preservation; Advisor and Chief Business Officer at Rimac Automobili, working on high-performance electric vehicles; CFO/CBO at Insilico Medicine, Inc., as well as Co-founder of Organ Preservation Alliance, a non-profit organization dedicated to the future of organ banking, Orphidia Ltd., a medical diagnostics company, and Walkmore, a data science company.

TIMELAPSE OF FUTURE TECHNOLOGY 3 (Sci-Fi Documentary)

This timelapse of future technology, the 3rd year of the video series, goes on a journey exploring the human mind becoming digital. Brain chips turn memories and thoughts into data; could this data be sent out into space to live in the cosmos encoded into the magnetic fields between stars.

Other topics covered in this sci-fi documentary video include: bio-printing, asteroid habitats, terraforming Mars, the future of Teslabots, lucid dreaming, and the future of artificial intelligence and brain to computer interfaces (BCI — brain chips).

PATREON
The first and second volumes of ‘The Encyclopedia of the Future’ are now available on my Patreon.

Visit my Patreon here: / venturecity.

Created by: Jacob B
Narration by: Alexander Masters.

Addition footage: NASA’s Goddard Space Flight Center/CI Lab.

Bioprinting technique creates functional tissue 10x faster

Three-dimensional (3D) printing isn’t just a way to produce material products quickly. It also offers researchers a way to develop replicas of human tissue that could be used to improve human health, such as building organs for transplantation, studying disease progression and screening new drugs. While researchers have made progress over the years, the field has been hampered by limited existing technologies unable to print tissues with high cell density at scale.

A team of researchers from Penn State have developed a novel bioprinting technique that uses spheroids, which are clusters of cells, to create complex tissue. This new technique improves the precision and scalability of tissue fabrication, producing tissue 10-times faster than existing methods. It further opens the door to developing functional tissues and organs and progress in the field of regenerative medicine, the researchers said.

They published their findings in Nature Communications.

Atoms transferred between optical tweezers via quantum tunneling in a first

Researchers at the University of Twente, Netherlands, have made an advancement in bioprinting technology that could transform how we create vascularized tissues. Their innovative bioink, recently featured in Advanced Healthcare Materials, introduces a way to precisely guide the growth and organization of tiny blood vessels within 3D-bioprinted tissues. The tiny blood vessels mimic the intricate networks found in the human body.

3D-printed organs have the potential to revolutionize medicine by providing solutions for organ failure, and tissue damage and developing new therapies. But a major challenge is ensuring these printed tissues receive enough nutrients and oxygen, which is critical for their survival and function. Without blood vessels, these tissues can’t efficiently obtain nutrients or remove waste, limiting their effectiveness. Therefore, the ability to 3D-bioprint blood vessels is a crucial advancement.

Tissue engineers could already position blood vessels during the bioprinting process, but these vessels often remodel unpredictably when cultured in the lab or implanted in the body, reducing the effectiveness of the engineered tissue. The programmable bioink developed by the University of Twente team addresses this issue by providing dynamic control over vessel growth and remodeling over time. This opens new possibilities for creating engineered tissues with long-term functionality and adaptability.

Revolutionary High-Speed 3D Bioprinter hailed a Gamechanger for Drug Discovery

Biomedical engineers from the University of Melbourne have invented a 3D printing system, or bioprinter, capable of fabricating structures that closely mimic the diverse tissues in the human body, from soft brain tissue to harder materials like cartilage and bone.

This cutting-edge technology offers cancer researchers an advanced tool for replicating specific organs and tissues, significantly improving the potential to predict and develop new pharmaceutical therapies. This would pave the way for more advanced and ethical drug discovery by reducing the need for animal testing.

Head of the Collins BioMicrosystems Laboratory at the University of Melbourne, Associate Professor David Collins said: In addition to drastically improving print speed, our approach enables a degree of cell positioning within printed tissues. Incorrect cell positioning is a big reason most 3D bioprinters fail to produce structures that accurately represent human tissue.

New high-speed 3D bioprinter uses acoustics to print human tissues

This development comes from…


Researchers have designed a high-speed 3D bioprinter to accurately print human tissues.

Interestingly, this advanced bioprinter is capable of fabricating a diverse array of tissues, including both soft brain tissue and harder materials such as cartilage and bone.

This development comes from biomedical engineers from the University of Melbourne.

3D laser bioprinter designed for precise human tissue engineering

A way to re grow new parts, perfect DNA match, eventually? Will take Agi / ASI to realize full potential, we ll see.


For this, the researchers have created a compact bioprinter to develop biological tissues with microfilament structures. He is now working to bring this technology to market.

“Our aim is to create human tissue models for high-throughput drug screening and other applications,” Liu said.

The human body is composed of various tissues, each with specific structures and functions. These tissues, like muscles, tendons, connective tissue, and nervous tissue, exhibit organized cellular arrangements. This organization is crucial for their proper functioning.

Voxel building blocks for bioprinting human-compatible organs

A research team at the University of Virginia School of Engineering and Applied Science has developed what it believes could be the template for the first building blocks for human-compatible organs printed on demand.

Liheng Cai, an assistant professor of materials science and engineering and chemical engineering, and his Ph.D. student, Jinchang Zhu, have made biomaterials with controlled mechanical properties matching those of various human tissues.

“That’s a big leap compared to existing bioprinting technologies,” Zhu said.

/* */